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Preface
Since the first edition of this book, new developments in forensic biology have led to a rapid 
expansion of the knowledge of the field. Therefore, it is necessary to create a new edition. This 
edition provides updates in most chapters of the original edition. Additionally, three new 
chapters (Chapters 2, 16, and 17) have been added and approximately 200 new figures have 
been created for this edition. Just like the first edition of this book, the new edition aims to 
inspire an undergraduate audience to tackle new challenges in the forensic biology field. It is 
written specifically to provide a general understanding of forensic biology and assist students 
in becoming more knowledgeable about the field of forensic biology and the wealth of available 
information. My readers should find that this edition of the book contains useful information, 
presented in a way that is more easily understood. Hopefully, it will be utilized by students, 
particularly those interested in forensic biology, to further enhance their education and training. 
I will continue to be open to suggestions in the future.

Richard C. Li
John Jay College of Criminal Justice

City University of New York
New York, NY
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Introduction
This text defines forensic biology as analyses performed in the forensic biology sections of foren-
sic laboratories and thus focuses on forensic serology and forensic DNA analysis. The aim of this 
book is to emphasize the basic science and its application to forensic science in an effort to make 
the principles more understandable. In addition, it introduces the language of forensic biology, 
thus enabling students to become comfortable with its use, and it provides clear explanations of 
the principles of forensic analysis.

To convey a general understanding of the concepts of forensic biology, it is necessary to 
include explanations of various techniques that are utilized in the field. The intent is to provide 
students with a scientific grounding in the area of forensic biology by offering an introduction to 
methods and techniques utilized by forensic biology laboratories. The techniques introduced in 
this text are accompanied by brief background descriptions and discussions of basic principles 
and techniques. Schematic illustrations are included where necessary. The text also acknowl-
edges the benefits and limitations that apply to forensic biology techniques. Forensic techniques 
that were used in the past are also described. Learning past examples of forensic tests can help 
students to review historical forensic cases.

This text contains five modules, organized by section: Section  I, Biological Evidence 
(Chapters 1–4); Section II, Basic Techniques in Forensic Biology (Chapters 5–11); Section III, 
Identification of Biological Evidence (Chapters  12–17); Section  IV, Individualization of 
Biological Evidence (Chapters  18–23); and Section V, Forensic Issues (Chapters  24–26). The 
26 chapters are designed to be covered in a single‐semester course.





Section I
Biological Evidence





3

1
Crime Scene Investigation 

of Biological Evidence
A forensic investigation involving biological evidence usually begins at the crime scene. The 
crime scene investigation process includes maintaining scene security, preparing documen-
tation, and collecting and preserving physical evidence. A crime scene investigation requires 
teamwork and effort. Each team member should be assigned specific tasks (Figure 1.1).

1.1 Protection of Crime Scene
A crime scene investigation begins with the initial response to a scene (Figure 1.2). Securing 
and protecting the scene are important steps in a crime scene investigation (Figures 1.3 through 
1.6), and this task is usually carried out by the first responding officer arriving on the scene. The 
entry of authorized personnel admitted to the scene should be documented using a log sheet 
(Figure 1.7). Suspects, witnesses, and living victims should be evacuated from the scene. If a 
victim is wounded, medical attention should be sought.

Appropriate supplies and devices should be used to prevent the contamination of evidence by 
investigators. Protective wear and devices including a face mask or shield, safety eyeglasses, a dis-
posable coverall bodysuit, gloves, shoe covers, and a hairnet should be used (Figures 1.8 and 1.9). 
Exposure to bodily fluids may occur during a crime scene investigation. An investigator can be 
exposed to bodily fluids through the mucous membranes, skin exposure, and needlestick injuries 
(especially when investigating a clandestine drug laboratory scene). Therefore, biosafety proce-
dures must be followed for the protection of personnel from infectious blood-borne pathogens 
such as the human immunodeficiency virus (HIV), hepatitis B virus (HBV), and hepatitis C virus 
(HCV); infectious aerosol tuberculosis pathogens; and other biohazardous materials.

1.2 Recognition of Biological Evidence
A preliminary survey should be carried out to evaluate potential evidence. In particular, the 
recognition of evidence plays a critical role in solving or prosecuting crimes. The priority of the 
potential evidence at crime scenes should be assessed based on each item’s relevance to the solu-
tion of the case. Higher priority should be assigned to evidence with probative value to the case. 
For example, the evidence related to a corpus delicti is considered to be of the highest priority. 
Corpus delicti is a Latin term meaning “body of crime.” In Western law, it primarily refers to the 
principle that in order for an individual to be convicted, it is necessary to prove the occurrence 
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Figure 1.1 A crime scene investigation team. (© Richard C. Li.)

Figure 1.2 A crime scene unit vehicle that is used to respond to crime scenes. This type of vehicle 
is usually outfitted with devices and supplies that investigators need when processing a crime 
scene, as well as evidence packaging materials, fingerprint collection kits, and DNA collection kits. 
Additionally, it can be equipped with a workstation for computer access, a refrigerator for storing 
chemicals, and a compact fuming hood for processing latent fingerprints, as well as equipment 
cabinets and drawers. (© Richard C. Li.)

Figure 1.3 Crime scene barrier tape is used to ensure that only investigators are admitted to the 
scene. (Courtesy of H. Brewster.)
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Figure 1.4 A police officer guards the crime scene. (© Richard C. Li.)

Figure 1.5 Crime scene privacy screen and tent. The screen (top) and the tent (bottom) are useful 
devices for shielding the evidence or body from viewing by unauthorized personnel. (© Richard C. Li.)
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of the crime. In a forensic investigation, it also refers to the physical evidence proving that a 
crime was committed. For example, when an individual is missing, a missing persons investi-
gation is usually initiated. If corpus delicti, such as a dead body or a victim’s blood at a crime 
scene (Figure 1.10), is discovered during the investigation, a homicide case can be established 
and a suspect can be charged with homicide. Higher priority should also be attached to evidence 
that can establish connections such as victim-to-perpetrator linkage. For example, items found 
in a perpetrator’s possession may be linked to a victim. This also applies to transfer evidence 
based on the principles of transfer theory, also known as the Locard exchange principle, which 
theorizes that the cross-transfer of evidence occurs when a perpetrator has any physical contact 
with an object or another person (Figures 1.11 through 1.14). Thus, trace evidence, such as hairs 
and fibers, may be transferred from a perpetrator to a victim or vice versa. This explains why it 
is important to ensure that perpetrators and their belongings are thoroughly searched for trace 
evidence. Likewise, victims and their belongings should be examined for the same reason.

Victim-to-scene and perpetrator-to-scene linkages can also be established. Blood belonging 
to a perpetrator or a victim found at a crime scene can establish such a linkage (Figure 1.15). 
Additionally, reciprocal transfers of trace evidence from crime scenes can be used to link a 
suspect or a victim to a crime scene. A perpetrator may present a unique modus operandi (MO). 
Modus operandi, a Latin term commonly used in criminal investigations, refers to a particular 
pattern of characteristics and the manner in which a crime is committed. For example, Richard 
Cottingham, a serial killer known as “the torso killer,” dismembered his victims and took their 
limbs and heads with him but left their torsos at the scene. He then set the rooms on fire before 

Figure 1.6 Barricades are set up to keep crowds at a distance from the scene. (© Richard C. Li.)
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fleeing the scenes. Evidence that provides information on the MO is also vital to an investiga-
tion. A distinct MO can establish a case-to-case linkage for serial offender cases.

1.3 Searches
Some investigations require a search for specific items of evidence such as biological stains, 
human remains, and all relevant evidence. A search usually has a specific purpose. Thus, the 
use of search patterns can be helpful, especially in cases involving large outdoor crime scenes. 

Figure 1.7 An example of a log sheet for documenting authorized personnel at a crime scene. 
(© Richard C. Li.)
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Search patterns may include a grid, line, or zone (Figures 1.16 and 1.17). The method that is ulti-
mately used depends on the type and size of the scene (Figures 1.18 through 1.20). Additionally, 
the points of entry and exit and the paths followed by a perpetrator should also be searched.

Searching for biological stains usually utilizes devices such as an alternate light source (ALS); 
see Figures 1.21 and 1.22. An ALS either produces a single specific wavelength of light or a desired 
wavelength by using specific filters. Biological materials such as blood, semen, and saliva emit fluo-
rescent light under an ALS, which can facilitate the locating of biological materials. Additionally, 

Figure 1.9 Disposable glove (left) and glove with extended cuff (right). (© Richard C. Li.)

Figure 1.8 Personal protection wear and devices that are used at crime scenes. (© Richard C. Li.)
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Figure 1.10 Photographic documentation of bloodstains on clothing. (© Richard C. Li.)

Figure 1.11 An electrostatic dust print lifting device can be utilized for processing impression 
evidence such as footprints and tire tracks. (© Richard C. Li.)

Voltage supply

Item in question

Ground plate

Metallic side of 
lifting film
Plastic side of 
lifting film

Figure  1.12 Basic components of an electrostatic dust print lifting device. The lifting film is 
placed on top of the item in question with the plastic side against the surface and the metallic side 
facing up. A ground plate is placed directly on the ground. The lifting film and ground plate are con-
nected to the voltage supply apparatus. Once the charging voltage is turned on, the static charge 
transfers the dust particles from the surface to the plastic side of the lifting film. (© Richard C. Li.)
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Figure 1.13 A high-intensity light-emitting diode (LED) device for locating evidence at a crime 
scene is particularly effective in highlighting trace evidence such as hairs, fibers, and shoe prints. 
(© Richard C. Li.)

Figure  1.14 A hair found on a victim’s clothing can be transferred evidence from a suspect. 
(© Richard C. Li.)

Figure 1.15 Finding a victim’s blood on a suspect’s clothing can establish a link between them. 
(© Richard C. Li.)
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Receiver Transmitter

Figure 1.18 Using ground-penetrating radar (GPR) to locate clandestine graves of homicide victims. 
GPR uses electromagnetic waves emitted from a transmitter, which are detected by a receiver to locate 
clandestine burials and buried objects such as weapons embedded in soils. Images of the potential 
evidence are typically obtained by moving the antenna of the GPR device over the surface of the ground. 
(© Richard C. Li.)

Figure 1.17 Line search pattern for an outdoor scene. (Courtesy of H. Brewster.)

Figure 1.16 Grid search pattern for an outdoor scene. The investigators and anthropologists pres-
ent are searching for human bone evidence within the grid. (Courtesy of H. Brewster.)
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Figure 1.19 Using cadaver-sniffing dogs to alert investigators to the presence of buried bodies. 
The odor produced by the decomposition of the human body may be sensed by cadaver-sniffing 
dogs. Odor-absorbing pads absorb and retain the scent of decomposed remains and can be placed 
at the scene for several days. Upon sniffing the pads, a cadaver dog may indicate the presence 
of buried human remains or may indicate that human remains were once buried in that location. 
However, it is not clear that this technique is reliable. (© Richard C. Li.)

Figure 1.20 Tracking dog for searching suspects. In a situation of processing a recent crime scene 
when the suspect may be in close vicinity to the scene, a tracking dog can be used. A tracking 
dog, such as a bloodhound, can potentially follow the scent from items left at the scene to locate a 
suspect nearby. (© Richard C. Li.)
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Figure 1.21 Compact alternate light source devices, which are intended specifically for use at 
crime scenes, reduce search time and improve the recovery of evidence such as biological evidence 
and chemically enhanced latent fingerprints. (© Richard C. Li.)

Figure  1.22 LED light sources provide illumination for locating evidence such as bodily fluid 
stains, hair, or fibers. (© Richard C. Li.)



Forensic Biology, Second Edition

14

field tests and enhancement reagents can be used to facilitate crime scene searching (Chapter 12). 
These reagents can detect and identify biological evidence. The tests are very simple, rapid, and 
sensitive, and thus can be used at crime scenes. For example, phenolphthalin and leucomalachite 
green tests can be used for detecting blood evidence. Sometimes, minute amounts of blood may be 

Figure 1.24 An example of sketch documentation. (© Richard C. Li.)

Figure 1.23 An example of a compact Rapid DNA device for processing DNA evidence in the field. 
(© Richard C. Li.)
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present at the scene as a result of attempts to clean up blood prior to the investigation. These stains 
may not be visible with the naked eye. Enhancement reagents such as luminol and fluorescein, 
which emit chemiluminant and fluorescent light upon reacting with certain biological materials, 
respectively, can be used. Additionally, the enhancement reagents can detect faint blood-containing 
pattern evidence such as faint bloody fingerprints, footprints, and other pattern evidence of physical 
contact such as drag marks in blood. However, precaution should be taken since these reagents are 
not usually very specific to blood. Certain substances such as bleach, various metals, and plants may 
also lead to chemical reactions with the field tests and the enhancement reagents. In these cases, the 
evidence collected is further tested with laboratory examination and analysis.

Recently, portable and field-deployable instruments have been developed that are capable 
of processing buccal swabs and potentially other evidence to produce a DNA profile on-site 
(Figure 1.23). It is a fully automated process, using the Rapid DNA technology (Chapter 8), that 
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Figure 1.25 Sketches for documenting the sites of fingerprints. (© Richard C. Li.)

Figure 1.26 A reflected ultraviolet imaging system (RUVIS) imager for documenting close-up views 
of evidence such as latent fingerprints. (© Richard C. Li.)
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can be completed within 2 h by a trained crime scene investigator or police officer. These instru-
ments may provide a new tool for expediting the identification of suspects and developing inves-
tigative leads at the scene. Additionally, this technology can enable law enforcement agents to 
rapidly determine whether the crimes were isolated incidents or part of serial crimes committed 
by the same offender, such as in serial burglary and arson cases. It can also be used in the iden-
tification of human remains in mass disasters.

1.4 Documentation
The conditions at a crime scene, including both the individual items of evidence and the overall 
scene, must be documented to provide vital information for investigators and for the courts. The 
most common documentation methods are drawing sketches and taking photographs and vid-
eographs. The sketch is to reflect the positions and the spatial relationships of items and persons 
with measurements using a scale. An investigator usually prepares a rough sketch first and later 
converts the rough sketch into a finished sketch (Figures 1.24 and 1.25). If bloodstains are pres-
ent at the scene, the location of bloodstain patterns should be emphasized. Prior to handling and 
moving evidence, photographs should be taken with different views: an overall view of the entire 
scene, a medium-range view showing the positions and the relationships of items, and a close-up 

Figure 1.27 Scales for photographic documentation. Regular scales (top) can be used with vis-
ible light sources. Fluorescence scales (bottom) can be used for the documentation of fluorescing 
evidence after certain treatment, such as chemical enhancement, using alternate light sources. (© 
Richard C. Li.)
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view showing details of the evidence (Figure 1.26). Photographs should also include a measuring 
device such as a scale (Figure 1.27) to accurately depict the sizes of items such as bloodstains or 
bite marks. This can be achieved simply by placing a ruler adjacent to the evidence when it is pho-
tographed (see Figure 1.28). A photograph log sheet can be used to record the chronological order 
of crime scene photographs and to note filming conditions and any additional relevant informa-
tion (Figure 1.29). Similar documentation should be prepared for videographs when appropriate. 
Additionally, written or audio-recorded notes can be used. Notes should include complete and 
accurate information of a crime scene investigation, such as the case identifier number, the iden-
tities of the investigators, and a description of the scene or items (e.g., location, size, and shape). 
Additionally, any disturbance of evidence occurring during crime scene processing should be 
noted.

1.5 Chain of Custody
Custody information should be recorded at each event when evidence is handled or transferred 
by authorized personnel. Usually, a custody form listing a specific evidence item is used to docu-
ment the chain (Figure 1.30). Each individual who acquires custody of the evidence must sign 
a chain of custody document. An incomplete chain of custody may lead to an inference of pos-
sible tampering or contamination of evidence. As a result, the evidence may not be admissible 
in court.

Figure 1.28 Photographic documentation of bloodstain patterns. (© Richard C. Li.)
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1.6 Collection of Biological Evidence
After the crime scene documentation is completed, the collection of evidence can be initiated. 
Small or portable items, such as bloodstained knives, can be collected and submitted to a crime 
laboratory (Figure 1.31). Large or unmovable items of evidence (Figure 1.32) can be collected 
and submitted in sections, such as a section of wall where bloodstains are located. Table 1.1 
and Figures 1.33 through 1.38 summarize and illustrate representative collection techniques. 
Specific care is required for the collection of biological evidence in the following situations:

  Bloodstain pattern evidence: It is especially important to thoroughly document the 
bloodstain pattern evidence at a crime scene prior to collection. Bloodstain patterns 
can be especially useful in crime scene reconstruction.

Figure 1.29 Crime scene photography log. (© Richard C. Li.)
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Figure 1.31 Handling sharp objects. Bloodstained knives collected and submitted to laboratories 
(top) and a box for packing sharp objects (bottom). (© Richard C. Li.)

Figure 1.30 Labels with the chain of custody that are used for marking the evidence contained in 
the packaging. (© Richard C. Li.)
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  Multiple analysis of evidence: If multiple analyses are needed for a single item of evi-
dence, nondestructive analyses should be carried out first. For example, a bloody fin-
gerprint should be collected for ridge detail analysis prior to collecting blood for DNA 
analysis.

  Trace evidence: Trace evidence such as hairs and fibers can be present in bloodstained 
evidence and should be identified and properly collected.

  Control samples: Control (known or blank) samples should be collected from a con-
trol area (e.g., unstained area near a collected stain).

  Size of stain: Polymerase chain reaction (PCR)-based forensic DNA techniques are 
highly sensitive and allow for the successful analysis of very small bloodstains. All 
bloodstains, even if they are barely visible, should be collected at a crime scene.

  Wet evidence: Wet evidence should be air-dried (without heat) prior to packaging 
to prevent the degradation of proteins and nucleic acids, which are used for forensic 
serological and DNA analysis.

1.7 Marking Evidence
The marking of evidence is necessary for identification purposes so that it can be quickly rec-
ognized even years later (Figure 1.39). An investigator’s initials, the item number, and the case 
number are usually included in marking. Information can be marked on a tag, a label attached 
to the item, or directly on garment evidence. The marking of evidence should not be proximal to 
bullet holes or biological stains to prevent the mark from interfering with analyses.

1.8 Packaging and Transportation
Packaging is intended to protect and preserve evidence. All evidence should be secured and 
protected from possible contamination. Fragile items should be protected to prevent any dam-
age during transportation. Exposure to heat and humidity should be avoided to protect bio-
logical evidence from degradation during transport. Various packaging methods are available 

Figure 1.32 A section of bloodstained carpet is collected. (© Richard C. Li.)
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Figure  1.33 Evidence collection kits. Sexual assault evidence collection kit (top). Paternity 
evidence collection kit (bottom). (© Richard C. Li.)

Figure 1.34 Various types of swabs that are used for collecting biological evidence. (© Richard C. Li.)
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depending on the type of evidence handled (Figures 1.40 through 1.42). The following are gen-
eral considerations related to the packaging of evidence:

  Evidence from different sources: To prevent the transfer of evidence from different 
sources, items of evidence should not be grouped in a single package. However, evi-
dence may be packed in a single container if the items were found together.

  Folding of evidence: Folding of clothing, especially items with wet bloodstains, can 
transfer evidence from one part of a garment to another. If a large, dry garment must 
be folded, a piece of clean paper should be placed between different parts of the gar-
ment to avoid direct contact between the different parts of the garment, thereby pre-
venting the transfer of evidence.

  Packing materials: Envelopes, bags, and boxes that are made of porous materials such 
as paper are appropriate for packaging dry biological evidence. Dry, bloodstained 
evidence should not be sealed in plastic bags or containers that trap moisture.

  Liquid evidence: Tubes containing liquid such as blood should not be frozen because 
the volume of a liquid expands in freezing temperatures and this expansion may 
lead to cracking. Tubes should be placed in plastic bags to prevent leaks in case of 

Figure  1.35 Fingernail swabbing for recovering evidence. Fingernail swabs are often collected 
from individuals who are involved in a struggle in violent crimes and in digital penetration in sexual 
assault cases. Fingernail swabs are sampled separately from both hands. (© Richard C. Li.)
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accidental breakage. Liquid evidence should be transported and submitted to a labo-
ratory as soon as possible after the collection of evidence.

  Trace evidence: All such evidence should be wrapped in paper with a druggist’s fold 
(Figure 1.43). The wrapped trace evidence can be packed in an envelope.

Packaged evidence should be properly labeled with a description of the evidence and sealed 
with evidence tape. It is important for the person packaging the evidence to initial and date 
across the seal to show authenticity (Figure 1.44). A seal should not be cut when a sealed evi-
dence bag is opened. Instead, an opening can be created by cutting at an area distal from the 
existing seal. After analysis is complete, the evidence packaging should be resealed. Table 1.1 
summarizes additional steps for packaging evidence.

1.9 Final Survey and the Release of the Crime Scene
During a final survey, a discussion with all personnel in the crime scene investigation team 
should be carried out to thoroughly review all aspects of the search. It is important to ensure 

Figure 1.36 Hand bags for protecting the hands of a decedent in an alleged suicide. Gunshot 
residue can be found on hands after firing a weapon (top). The bagging of the hands, using paper 
bags and wide rubber bands, prevents the loss of gunshot residue during the transportation of the 
body (bottom). (© Richard C. Li.)
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Figure 1.37 Blood cards are typically used for collecting blood evidence from a known source such 
as a suspect or a victim (top). A manual hole punch can be used to create a blood card punch for 
DNA extraction. Blood samples are air-dried on blood cards for storage (bottom). (© Richard C. Li.)

(a) (b) (c)

Wash

Forensic
DNA testing

Figure 1.38 Application of Flinders Technology Associates (FTA) filter paper for the collection of 
biological evidence. (a) Biological fluid with cells is applied to FTA paper. (b) Cells are lysed and 
DNA is immobilized on FTA paper. (c) Cellular materials are washed away and DNA remaining on 
the FTA paper can be used for forensic testing. (© Richard C. Li.)
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Figure 1.40 Evidence containing dried bodily fluid stains is packed in a paper bag. (© Richard C. Li.)

Figure 1.39 Photographic documentation of a knife. Note the evidence tag. (© Richard C. Li.)

Figure 1.41 Alleged diluted blood collected from a pipe (left) and placed in plastic containers 
(right). (© Richard C. Li.)
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Figure 1.42 Evidence pouch. The front of the pouch is transparent for viewing the content. The back 
of the pouch is made of breathable materials allowing wet evidence, such as swabs, to dry inside the 
pouch. (© Richard C. Li.)

Figure 1.43 An example of a druggist’s fold. Trace evidence should be deposited in the center 
(colored area) of the paper. (© Richard C. Li.)
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that the scene has been searched correctly and completely, and that no area has been missed or 
overlooked. All documentation including the chain of custody document must be complete and 
all evidence should be collected, packed, documented, and marked. Photographs of the final 
condition of the scene should be taken. Once the final survey is completed, the crime scene 
can be released. Reentry into the crime scene may require a search warrant after the scene is 
released. Crime scene release documentation usually includes the time and date of release, to 
whom it is released, and by whom it is released.

1.10 Crime Scene Reconstruction
Crime scene reconstruction is the scientific process of determining the sequence of events 
and actions that occurred prior to, during, and after a crime. Reconstruction is carried out 
based on the information from the crime scene observations and the laboratory examina-
tion of physical evidence. The overall scientific process in reconstruction usually involves 
several steps. The process usually begins with the formulation of questions related to the 
problems that need to be solved. The questions can refer to the explanation of the specifics 
of the crime, for instance, “Where was the shooter’s position when the shooting occurred?,” 
“Where was the victim’s position when shot?,” and “What is the muzzle-to-target distance 
during the shooting?” In order to conduct a thorough crime scene reconstruction, all useful 
information is collected for review, such as photographs, videotapes, notes, sketches, autopsy 
reports, and analysis reports of the physical evidence. A hypothesis is then constructed based 
on the information obtained, which may explain the events and actions involved in a crime. 
The next step is making predictions that determine the logical consequences of the hypoth-
esis. One or more predictions are selected for testing. The hypothesis is tested by conduct-
ing reconstruction experiments. One example of a reconstruction test is bloodstain pattern 
reconstruction in violent crimes (Chapter 2). Other examples of reconstruction may include 
trajectory and shooting, glass fracture, and accident reconstruction. The final step is to ana-
lyze experimental data and draw a conclusion. The experimental data are analyzed to see if 
the hypothesis is true or false. Additionally, the interpretation of physical evidence analysis, 
witness and confession statements, and investigative information should also be considered. 

Figure 1.44 Proper marking of sealed evidence. Note that the evidence packaging was cut a sec-
ond time and resealed at a different location than that of the preexisting seal. (© Richard C. Li.)



Forensic Biology, Second Edition

30

If the results of the experiment are consistent with the hypothesis, a theory can be developed 
that is intended to provide valuable information to the investigation and future prosecution 
of a case. Sometimes, forensic scientists may find that the hypothesis is inconsistent with 
the test results. In that case, an alternative hypothesis needs to be constructed to initiate 
another reconstruction process. Figure 1.45 illustrates the scientific process of crime scene 
reconstruction.
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2
Crime Scene Bloodstain 

Pattern Analysis
Bloodstain pattern analysis is the application of scientific knowledge to the examination and 
the interpretation of the morphology, the sequence, and the distribution of bloodstains associ-
ated with a crime. These analyses may determine the sequence of events; the approximate blood 
source locations; the positioning of the victim; and the position, the intensity, and the number 
of impacts applied to the blood source. They also can assist in the determination of the manner 
of death and can distinguish between accidents, homicides, and suicides. Bloodstain pattern 
analysis provides critical information for crime scene reconstructions in violent crime investi-
gations (Chapter 1).

2.1 Basic Biological Properties of Human Blood
Blood is a bodily fluid circulating within the body. An average adult has a blood volume of 
approximately 8% of his or her body weight. Blood consists of a cellular portion as well as a liq-
uid portion known as plasma (Chapter 12). The cellular portion consists of blood cells and plate-
lets. The plasma is mostly composed of water and other substances such as proteins, inorganic 
salts, and other organic substances. The mass density of blood is only slightly greater than that 
of water. Blood can form clots (or thrombi) that are the result of blood coagulation (Chapter 16). 
Coagulation begins after an injury occurs, stopping blood loss from a damaged vessel. The nor-
mal coagulation time for 1 mL of venous blood in a glass tube is 5–15 min. The coagulation time 
can be affected by many factors such as blood volume and mechanical disturbance.

2.2 Formation of Bloodstains
The formation of a blood droplet is a complex event that is influenced by viscosity, surface ten-
sion, cohesion force, and gravity. Blood is viscous, and blood viscosity is a measure of the blood’s 
resistance to flow. The viscosity of blood is approximately five times greater than that of water. 
During the formation of a drop of blood, blood leaks out from a blood source. The surface ten-
sion of the blood causes it to hang from the opening of a blood source and to form a pendant 
drop of blood (Figure 2.1). The molecules of a blood drop are held together by the cohesion force 
to maintain the shape of a blood drop (Figure 2.2). Surface tension causes liquids to minimize 
their surface. As a result, the formed blood drop is spherical. As the volume of the drop gradu-
ally increases and exceeds a certain size, it detaches itself and falls. The falling drop is also held 
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together by surface tension. A falling blood drop is influenced by the downward force of grav-
ity acting on the drop and the air resistance that acts in the opposite direction as the drop is in 
motion (Figure 2.1).

When a bloodstain lands on a surface, the shape and the size of the bloodstain is affected 
by the texture of the target surface. Bloodstains that land on porous or rough surfaces usually 

Air resistance

Gravity

Figure 2.1 Forming a blood drop from a blood source. The blood that leaks out of the blood source 
forms a pendant drop of blood. As the volume of the pendant drop increases, the drop stretches in 
a downward direction. Eventually, the drop detaches and falls. The falling drop is largely influenced 
by the force of gravity and air resistance. (© Richard C. Li.)
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have more distortion around the edges of the stains than those that land on smooth surfaces. A 
comparison of blood dropped onto different textures of target surfaces is shown in Figure 2.3.

2.3 Chemical Enhancement and Documentation of Bloodstain Evidence
Many chemical reagents react with blood to exhibit a color, a chemiluminescent light, or a flu-
orescent light (Chapter  12). These tests are extremely sensitive and thus are used as chemical 
enhancement reagents for detecting bloodstains. For bloodstain pattern analysis, the enhance-
ment reagent is primarily used for detecting latent bloodstains such as diluted bloodstains that 
are visible on enhancement. A commonly used chemical reagent is luminol, which can be used for 
locating bloodstains at the scene. Other reagents such as phenolphthalein, leucomalachite green, 
and tetramethylbenzidine are not often used as enhancement reagents but rather as presumptive 
tests for blood. The positive reactions of all these reagents indicate the presence of blood.

Documenting bloodstain patterns at the scene is a major task of the investigation. Documenting 
bloodstain evidence can be done using a combination of photography, note-taking, and sketch-
ing. The general principle of crime scene documentation is described in Chapter 1. In bloodstain 
pattern analysis, special attention must obviously be given to bloodstains. The photographic 
documentation of bloodstains may be performed by multiple means, including film and digital 

Figure 2.2 The particles of blood are attracted to each other by cohesive forces that are responsi-
ble for surface tension. As a result, a formed blood drop is spherical in order to minimize its surface 
area. Black arrow, cohesive force; white arrow, surface tension. (© Richard C. Li.)

(a) (b) (c)

Figure 2.3 The respective morphologies of falling blood drops that land on surfaces with different 
textures at a 30° angle. (a) Tile, (b) cardboard, and (c) paper towel. (© Richard C. Li.)
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photography, as well as videotaping. Photographs should be taken with an overall view followed 
by a medium-range and a close-up view of the bloodstain patterns. A scale of measurement must 
be included in the photograph, which is critical for bloodstain analysis. To avoid any distortion, 
the photographs should be taken with the camera lens parallel to the target surface where the 
bloodstains are located. An overall photograph provides an overall view of the scene including the 
bloodstain evidence (Figure 2.4a). A midrange photograph provides more details of the bloodstain 
pattern compared with that of the overall photograph (Figure 2.4b). Single bloodstains should be 
visible in midrange images. A close-up photograph, usually taken with a macro lens, provides a 
detailed image of single bloodstains, which is useful for spatter pattern analysis (Figure 2.4c).

(a)

(b)

(c)

Figure 2.4 Crime scene photographic documentation. (a) Overall, (b) midrange, and (c) close-up 
photographs. (© Richard C. Li.)
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2.4 Analyzing Spatter Stains
A spatter stain, based on the recommended terminology of the Scientific Working Group on 
Bloodstain Pattern Analysis (SWGSTAIN), is “a bloodstain resulting from a blood drop dis-
persed through the air due to an external force applied to a source of liquid blood.” The patterns 
of spatter stains, including the shape and the size of the stains, are affected by the direction and 
the angle of impact (discussed in detail in Section 2.5.3) of the spatter stains that are projected. 
This information can be obtained from an analysis of the patterns of the spatter stains. Thus, it 
is possible to determine the area of origin (discussed in detail in Section 2.4.4) where an external 
force was directly applied to the blood source.

2.4.1 Velocity of Blood Droplets
The sizes of bloodstains are affected by the external force that is directly applied on a blood source. 
Increasing the energy of the external force will reduce the surface tension, thus decreasing the size 
of the droplets. Since these travelling blood droplets are driven by the energy derived from the 
external force, the higher the energy, the higher the velocities of the droplets. Bloodstains can be 
divided into three categories based on different travelling speeds. Low-velocity impact spatter is 
formed when a blood droplet is travelling at <1.5 m/s. The resulting stains are usually >4 mm in 
diameter (Figure 2.5a). As the travelling speed of blood droplets increases, the size of the spatter 
stain decreases. Medium-velocity impact spatter is formed when a blood source is subjected to a 
force associated with beatings or stabbings. The resulting stains range from 1 to 4 mm in diameter 
(Figure 2.5b). High-velocity impact spatter is formed when a blood source is subjected to a force 
associated with shooting using firearms. The resulting stains are usually <1 mm in diameter.

2.4.2 Determining the Directionality of the Stains
In this analysis, the effects of the directionality of the spatter stains projected are examined. 
SWGSTAIN defines the directionality to be “the characteristic of a bloodstain that indicates 
the direction blood was moving at the time of deposition.” This analysis is applicable when the 
blood source is projected onto a surface at an angle of between 0° and 90°. Under this condi-
tion, the resulting spatter stain is an elongated ellipse (Figure 2.6), which is known as the parent 
stain. Additionally, satellite stains in the vicinity of the parent stain can be observed. As defined 
by SWGSTAIN, a satellite stain is “a smaller bloodstain that originated during the formation of 
the parent stain as a result of blood impacting a surface.” More importantly, a spine is observed, 
which is the pointed edge away from the parent stain. When such a pattern is observed, the 
pointed end of the spine always points toward the direction of travel of the bloodstains.

(a) (b)

Figure 2.5 Bloodstains can be categorized based on their travelling velocities. (a) An example of 
a low-velocity impact spatter stain and (b) an example of a medium-velocity impact spatter stain. 
(© Richard C. Li.)
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2.4.3 Determining Angles of Impact
SWGSTAIN defines the angles of impact to be “the acute angle (alpha), relative to the plane of 
a target at which a blood drop strikes the target.” The shapes of the spatter stains are affected 
by the angle of impact. When a blood drop lands on a surface at a perpendicular angle (90°), 
a circular parent stain is formed (Figure 2.7), where the length and the width of the stain are 
equal. When a blood drop is projected onto a surface at an angle of between 0° and 90°, the stain 
is elongated. As the impact angle decreases, the shape of the spatter stain is more elongated 
(Figure 2.7), in which the length of the stain is greater than the width. It is observed that the 
ratio of the width and the length of the parent stain is proportional to the sine of the impact 
angle, which is summarized in the following trigonometric equation:

 
sin α =
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Figure 2.6 The morphology and directionality of a blood spatter stain. The arrow indicates the 
direction of travel. (© Richard C. Li.)

(a) (b) (c) (d)

Figure 2.7 The effects of the impact angle on the shapes of blood spatter stains. Spatter stains are 
projected onto the surface of a ceramic tile at: (a) 90°, (b) 50°, (c) 20°, and (d) 10°. (© Richard C. Li.)
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In this equation, α is the angle of impact, l is the length of the parent stain (major axis), and w is 
the width of the parent stain (minor axis). Thus, the angle of impact can be determined based on 
the relationship between the length and the width of the stain (Figure 2.8). Obviously, the mea-
surement of the stain’s axes is critical to the accuracy of the calculation of the angle of impact. 
To produce accurate and reproducible measurements, bloodstain pattern analysis software can 
be used, which superimposes a scaled close-up image of an individual bloodstain and calculates 
the angle of impact.

2.4.4 Determining Area of Origin
SWGSTAIN defines the area of origin to be “the three-dimensional location from which spat-
ter originated.” Using simple trigonometry, the area of origin can be determined based on the 
measurements from multiple elongated spatter stains (Figure 2.9). This can be accomplished by 
using the string method or the tangent method.

Plane of 
target surfacel

w

α

Path of projectile

Direction of travel 
of droplet

Figure 2.8 Impact angle. The angle between the path of a projectile and the plane of the target 
surface is shown. α, the impact angle; l, the length of the parent stain; and w, the width of the par-
ent stain. (© Richard C. Li.)

Area of origin

Projected string

Plane of target surfaceα
α

α

Figure 2.9 Area of origin. The area of origin is determined using the string method. Only three 
representative bloodstains are shown. α, impact angle. (© Richard C. Li.)
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In the string method, multiple (approximately two dozen) well-formed, elongated spatter 
stains are selected for analysis (Figure 2.10a). For each stain, the angle of impact is calculated. 
A piece of string is then connected between the stain and a surface with one end of the string 
precisely attached to the spatter stain (Figure 2.10b). The path of the string, indicating the trajec-
tory of the stain, is set using a protractor based on the calculated angle of impact (Figures 2.10c 
and 2.11). This process is repeated until all the stains that have been selected are processed. For 

(a)

(c)

(b)

Figure 2.10 Determining the area of origin using the string method. (a) Selecting elongated spatter 
stains, (b) connecting strings, and (c) setting the path of the strings. (© Richard C. Li.)
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a spatter pattern generated from a single impact event, the strings converge. The area where the 
strings meet is the area of origin.

In the tangent method, the directionality of a single stain is determined first. A line is then 
back projected through the major axis of the bloodstain. For a single impact event, approximately 
two dozen stains are processed to determine the area of convergence. Based on SWGSTAIN’s 
definition, the area of convergence is “the area containing the intersections generated by lines 
drawn through the long axes of individual stains that indicates in two dimensions the location 
of the blood source.” Next, the angle of impact of each stain is calculated. The distance from the 
bloodstain to the area of convergence is measured (Figure 2.12). The height of the area of origin 
is calculated using the tangent function as shown:

 H D= ⋅ tan α

(a) (b)

Figure 2.11 Tools for finding the area of origin. (a) Laser trajectory pointer and (b) string and 
scales. (© Richard C. Li.)

Area of origin

Path of projectile

Back-projected line

Area of 
convergence

H

D
α

α
α

Figure 2.12 Determining the area of origin using the tangent method. Only three representative 
bloodstains are shown. α, the angle of impact; H, the height of the area of origin; and D, the dis-
tance from the spatter stain to the area of convergence. (© Richard C. Li.)
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In the equation, α is the angle of impact, H is the height of the area of origin, and D is the dis-
tance from the spatter stain to the area of convergence.

2.5 Types of Bloodstain Patterns
Bloodstain patterns can be classified into three basic categories: passive, transfer, and projected 
bloodstains.

2.5.1 Passive Bloodstains
A passive bloodstain is formed due to bleeding from wounds, and the blood is deposited on a 
surface by the influence of the force of gravity alone. For example, a drip stain is formed when a 
falling drop of blood from an exposed wound or a blood-bearing object lands on a surface. If a 
blood source is moving, a drip trail is formed. A drip pattern, which is distinct from a drip stain, 
is formed when a liquid drips into another liquid, where one or both of the liquids are blood 
(Figure 2.13). As a result, secondary spatter stains are generated. As the dropping distance of the 
blood increases, the number of secondary spatter stains usually increases, and the size of these 
stains decreases. An approximate estimation of the dropping distance is possible. A splash pat-
tern is formed when a volume of blood spills onto a surface (Figure 2.14). Splash patterns usually 

Figure 2.13 A drip pattern. The secondary spatter stains are shown. (© Richard C. Li.)

Figure 2.14 A splash pattern. Peripheral, elongated bloodstains are shown. (© Richard C. Li.)
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have large stains surrounded by numerous, peripheral, elongated bloodstains. A flow pattern 
is caused by the movement of a large volume of blood on a surface either due to gravity or to 
the movement of the target such as a victim or postmortem disturbance. A pool is a bloodstain 
resulting from the accumulation of liquid blood on a surface (Figure 2.15). Sometimes, air bub-
bles in the blood may cause a bubble ring pattern (Figure 2.15). If blood is coagulated, gelatinous 
blood clots can be observed. Additionally, a serum stain, which consists of the liquid portion of 
the blood after a clot is formed, may also be present.

(a)

(b)

(c)

Figure 2.15 Pool and bubble ring patterns. (a) A pool pattern, (b) a disturbed pool pattern, and 
(c) a splash pattern with a bubble ring. Bubble rings are also present in (a) and (b). (© Richard C. Li.)
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2.5.2 Transfer Bloodstains
A transfer bloodstain, based on SWGSTAIN, is “a bloodstain resulting from contact between a 
blood-bearing surface and another surface.” For example, a swipe pattern is “a bloodstain pattern 
resulting from the transfer of blood from a blood-bearing surface onto another surface, with char-
acteristics that indicate relative motion between the two surfaces.” For example, bloody impressions 
can provide information about the shape, the size, and the pattern of the objects such as finger 
ridges, hands, and shoe soles. Examples of hand and shoe swipe patterns are shown in Figures 2.16 
and 2.17. A wipe pattern is “an altered bloodstain pattern resulting from an object moving through 
a preexisting wet bloodstain.” Examples of wipe patterns are shown in Figures 2.18 and 2.19. A 
perimeter stain, a type of wipe pattern, is a bloodstain that is disturbed before it is dried but it main-
tains the peripheral characteristics of the original stain (Figure 2.20). Perimeter stain patterns can 
be useful for the estimation of sequential events of acts. The pattern can also be used to estimate 
a time frame between the time of bleeding and the subsequent act. However, the drying time of a 
blood drop varies based on the surrounding conditions. Therefore, it is necessary to carry out a 
crime scene reconstruction under similar conditions to those of the scene to make such estimations.

2.5.3 Projected Bloodstains
A projected bloodstain is formed when a volume of blood is deposited on a surface under a 
pressure or a force that is greater than the force of gravity. For example, an impact pattern is 

(a)

(b)

Figure  2.16 Bloody impressions. Bloody handprints are present on (a) a wall and (b) fabric. 
(© Richard C. Li.)
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formed when an object strikes liquid blood (Figure 2.21). A cast-off pattern is formed when 
blood drops are released from a moving blood-bearing object (Figure 2.22). Some spatter pat-
terns are often associated with a wound penetrated by a projectile (Figure 2.23). A forward 
spatter is formed when blood drops travel from an exit wound in the same direction as a 
projectile, while a back spatter is formed when blood drops travel from an entry wound in 
the opposite direction of a projectile. Sometimes, internal bleeding caused by an injury may 
block the airway. An expiration pattern is formed when blood is forced by airflow through the 

(a)

(b)

(c)

Figure 2.17 Bloody impressions. Bloody shoe prints on (a) paper and (b) fabric; and (c) bloody 
footprints on tile. (© Richard C. Li.)
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Figure 2.18 Wipe patterns. (© Richard C. Li.)

(a) (b)

(c) (d)

Figure 2.19 A wipe pattern caused by dragging a body through a pool of blood. (a) A pool of blood. 
Sections of the wipe pattern caused by dragging are shown in (b), (c), and (d). (© Richard C. Li.)
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trachea and out of the nose or mouth (Figure 2.24). An arterial spurt pattern is associated with 
wounds damaging arterial blood vessels where bloodstains are driven by arterial pressure. 
Although the shape of arterial patterns varies, these patterns usually have a series of large 
spurts with fluctuations corresponding to the systolic and the diastolic blood pressures. At a 
crime scene, if the projectile of bloodstains is blocked by an object, a void pattern is formed, 
which exhibits an area where there is an absence of blood surrounded by continuously dis-
tributed bloodstains.

(a)

(b)

(c)

Figure  2.20 Perimeter stains. (a) Peripheral characteristics of the original stains are shown. 
Perimeter stains were created at different periods of time after the original stain was formed: 
(b) midrange view and (c) close-up view. (© Richard C. Li.)
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Figure 2.21 An impact bloodstain pattern as a result of using blunt force. (© Richard C. Li.)

(a) (b)

Figure 2.22 Cast-off patterns. Spatter stains are projected onto (a) a covered wall and (b) a lab 
coat. (© Richard C. Li.)

Entry wound Exit wound

Forward 
spatter

Back 
spatter

Figure 2.23 Forward and back spatter patterns. Arrow, the direction of a projectile. (© Richard C. Li.)
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3
Forensic Biology

A Subdiscipline of Forensic Science

Forensic laboratories provide scientific analysis, evidence evaluation, and consultations to vari-
ous criminal justice agencies for the investigation of criminal cases. Additionally, forensic labo-
ratories provide expert testimony related to the resolution of criminal cases to the courts.

3.1 Common Disciplines of Forensic Laboratory Services
Many of the disciplines of the forensic laboratory services are commonly practiced in various 
municipal, county, state, and federal forensic laboratories in the United States. Forensic biol-
ogy is a subdiscipline of forensic science. A full range of forensic laboratory services, known as 
“full service,” usually includes: crime scene investigation (Figure 3.1); latent print examination 
(Figure 3.2); forensic biology (Figure 3.3); controlled substance analysis (Figure 3.4); postmor-
tem toxicology (Figure 3.5); questioned document examination (Figure 3.6); firearm, toolmark, 
and other impression evidence examination (Figures 3.7 through 3.10); explosive and fire debris 
examination (Figure 3.11); and transfer (trace) evidence examination (Figures 3.12 and 3.13). 
Table 3.1 describes the services that are normally provided by a forensic laboratory with their 
respective analyses.

3.2 Laboratory Analysis of Biological Evidence
Forensic biology uses scientifically accepted protocols to analyze biological evidence. Laboratory 
analysis (Figures 3.14 and 3.15) utilizes scientific techniques for the examination of evidence, the 
reconstruction of a crime scene, the identification of biological fluids, and the comparison of 
individual characteristics of biological evidence.

3.2.1 Identification of Biological Evidence
The identification of biological evidence is the first step that is performed before further analy-
ses are carried out. This includes the identification of biological fluids such as blood, saliva, and 
semen; this process is discussed in more detail in subsequent chapters (Chapters 12 through 
14). The identification is based on a comparison of class characteristics—a set of characteris-
tics that allows a sample to be placed in a category with similar materials. By comparing the 
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class characteristics of a sample with known standards of its class, biological samples can be 
identified.

3.2.2 Comparison of Individual Characteristics of Biological Evidence
Individual characteristics refer to the unique characteristics of both the evidence and a 
reference sample such as fingerprints, which share a common origin to a high degree of 
certainty. An example of biological evidence possessing individual characteristics is DNA 
polymorphisms. In the case of biological evidence, current forensic DNA profiling can 
compare individual characteristics of DNA evidence with a known reference sample. It is 
possible to determine that a biological stain originated from a particular individual, which 
is useful for human identification. The examination of individual characteristics of evi-
dence can also exclude the possibility of a common origin. The specific methods utilized 
for the individualization of evidence are also discussed in subsequent chapters (Chapters 19 
through 23).

3.2.3 Reporting Results and Expert Testimony
After the analysis of evidence is completed, a report is prepared based on the results of 
the analysis, which may include sections discussing the specific evidence analyzed, the 
method of analysis used, the results obtained, and the conclusions drawn. In the case of 
DNA evidence, the strength of the conclusion is usually evaluated via statistical computa-
tions (Chapter 25). A forensic scientist often serves as an expert witness whose testimony 

Figure 3.1 Crime scene investigation. Recovery of fired casings at the scene can aid in determin-
ing the position of the shooter. (© Richard C. Li.)
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provides professional opinions about the evidence analyzed. Based on the federal rules of 
evidence, an expert witness is qualified based on his or her knowledge, skill, experience, 
training, or education, and may give an opinion to the court that is relevant to the analyses 
conducted. However, forensic scientists must also communicate their findings to attorneys, 
judges, and members of a jury. This requires the translation of technical information into 
layman’s terms.

Figure 3.2 Developing latent fingerprints by dusting methods. Using magnetic fingerprint powder 
(top) that is held by a magnetic applicator (middle). Fingerprints (bottom) dusted by magnetic fin-
gerprint powder, tape lifted and preserved on a fingerprint card. (© Richard C. Li.)
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Figure 3.3 A section of a forensic biology laboratory showing an automated electrophoresis instru-
ment used for forensic DNA profiling (left). Processing biological evidence in a biosafety cabinet 
(right). (© Richard C. Li.)

Figure 3.4 Gas chromatograph (top) and gas chromatograph-mass spectrometer (bottom) used for 
controlled substance analysis. (© Richard C. Li.)
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3.3 Forensic Science Services Related to Forensic Biology
A number of specialized forensic science services beyond those provided by forensic laboratories 
are routinely available to law enforcement agencies. For example, forensic services related to 
biological evidence and those involving more specialized analysis are available. These services 
are important aids to a criminal investigation and require the expertise of individuals who have 
highly specialized skills.

Figure 3.5 Tissue samples (left) and gas chromatograph-mass spectrometer (right) for forensic 
postmortem toxicological analysis. (© Richard C. Li.)

Figure 3.6 A digital imaging system, using multiple illumination sources ranging from ultraviolet to 
infrared wavelengths, for examining altered and counterfeit documents (left). An electrostatic imaging 
system for detecting indented writing on questioned documents (right). This device generates an electro-
static image of indented writing, which is then visualized using charge-sensitive toners. (© Richard C. Li.)

Figure 3.7 Striation marks on fired bullets can be analyzed to match a bullet to a gun. (Courtesy 
of P. Diaczuk.)
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3.3.1 Forensic Pathology
When a death is deemed suspicious or unexplained, medical examiners frequently perform 
autopsies to determine the exact cause (Figures 3.16 and 3.17). The manner of death is classified 
into one of five categories based on the circumstances: natural, homicide, suicide, accident, or 
undetermined. Additionally, a medical examiner participating in a criminal investigation is 
often responsible for estimating the time of death.

3.3.2 Forensic Anthropology
Forensic anthropology is the identification and the examination of human skeletal remains 
(Figures 3.18 and 3.19). Skeletal remains can reveal a number of individual characteristics that 
can be useful in attempting to identify an individual. An examination of bones may reveal an 
individual’s origin, sex, approximate age, race, and the presence of a skeletal injury. A forensic 
anthropologist may also assist in creating facial reconstructions to aid in the identification of 
skeletal remains or may be called on to help collect and organize bone fragments in the course 
of identifying victims of mass disasters such as plane crashes as well as victims in mass graves 
discovered after wars or genocides.

Figure 3.8 Fired hollowpoint bullets (.45 caliber ACP Winchester). Striation marks are visible on 
the side view of a bullet (right). (© Richard C. Li.)

Figure 3.9 A comparison microscope is used for the simultaneous comparison of two items of 
firearm evidence side by side. (© Richard C. Li.)
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Figure 3.10 Comparing the striations between evidence and reference samples using a compari-
son microscope: casings (top) and bullets (bottom). (Courtesy of P. Diaczuk.)

Figure 3.11 Scanning electron microscope used in the analysis of gunshot residue and explosives. 
(© Richard C. Li.)
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3.3.3 Forensic Entomology
The study of insects in relation to a criminal investigation is known as forensic entomology. 
This forensic discipline is valuable for estimating the time of death when the circumstances sur-
rounding the crime are otherwise unknown. The stages of development of certain insect species 
present in or on a body can be identified and allow a forensic entomologist to approximate how 
long the body was left exposed (Figure 3.20).

Figure 3.12 Trace evidence such as hairs can be transferred during the acts of a violent crime. The 
analysis and comparisons of these types of trace evidence can potentially establish a link between 
a suspect or a victim and a crime scene. Hairs from human (top), horse (middle left), deer (middle 
right), dog (bottom left), and cat (bottom right). (© Richard C. Li.)

Figure 3.13 Trace evidence: fibers. Cotton (left), nylon (middle), and polyester (right). (© Richard C. Li.)
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Table 3.1 Common Services Provided by US Forensic Laboratories

Service Function Method

Crime scene 
investigation

Evidence recognition, 
documentation, collection, 
and preservation

Crime scene responses and related 
endeavors are diverse and vary with case 
and type of evidence

Latent print 
examination

Analysis of friction ridge detail 
in fingerprints

Activities include visualization, 
recording, comparison, storage, 
and recovery of latent prints

Alternate light sources, physical (powder) 
and chemical enhancements

Direct lifts, photography, and digital imaging
Use of an Automated Fingerprint 
Identification System (AFIS) database

Forensic 
biology

Identification of biological 
fluids (blood, semen, and 
saliva)

DNA profiling for 
individualization

Serological and biochemical methods
Polymerase chain reaction (PCR)-based 
methods

Automated electrophoresis platforms
Use of Combined DNA Index System (CODIS)

Controlled 
substance 
analysis

Identification and 
quantification of drugs 
present in submitted 
evidence

Microscopic, chemical, chromatographic, 
and spectroscopic methodologies

Gas chromatography–mass spectrometry or 
infrared spectrophotometry

Postmortem 
toxicology

Determination of 
concentrations of substances 
and their metabolites in 
biological fluids or tissues

Immunoassays and chemical methods
Confirmatory techniques such as gas and 
liquid chromatography–mass spectrometry

Questioned 
document 
examination

Investigation of forgeries, 
tracings, disguised 
handwritings, computer 
manipulation of images, and 
recovery of altered documents

Analysis of papers, inks, toners, 
word processors, typewriters, 
copiers, and printers

Macroscopic and microscopic comparisons
Chromatographic and spectroscopic 
methods

Firearm and 
toolmark 
examination

Identification of firearms, 
tools, and other implements 
(expertise achieved 
predominantly through 
experience)

Microscopic comparisons of questioned and 
authenticated impressions

Comparison of striae on recovered bullets
Use of National Integrated Ballistics 
Information Network (NIBIN)

Explosive 
and fire 
debris 
examination

Identification, recovery, and 
detection of bulk explosives, 
residues, debris, and 
accelerants

Microscopic, spectroscopic, and 
chromatographic methods

Gas chromatography–mass spectrometry may 
be needed to adequately characterize sample

Trace 
evidence 
examination

Analysis of transferred 
evidence such as hairs, 
fibers, soil, paints, and glass

Microscopic analysis of evidence with gas 
chromatograph-mass spectrometers, FTIR 
microscopes, scanning electron 
microscopes, basic and advanced 
microscopy, and capillary electrophoresis

Source: Adapted from US Department of Justice, Office of Justice Programs, National Institute of 
Justice (NIOJ), Forensic Science: Review of Status and Needs, 1999, US Department of 
Justice, Washington, DC.
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Figure 3.14 Photographic documentation of a bloodstained shirt after visual examination. (© Richard 
C. Li.)

Figure 3.15 A multiwavelength viewing and imaging device used for the examination of various 
types of evidence, including bodily fluid stains. (© Richard C. Li.)
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Figure 3.18 Buried human skeletons recovered by forensic anthropologists. (Courtesy of H. Brewster.)

Figure 3.17 Photographic documentation prior to autopsy (left). Preparing specimens for histologi-
cal sections for forensic pathological examination (right). (Courtesy of G. Ledwell.)

Figure 3.16 View of a forensic pathology facility. (Courtesy of G. Ledwell.)
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3.3.4 Forensic Odontology
Practitioners of forensic odontology participate in the identification of victims whose bodies 
are left in an unrecognizable state. The characteristics of teeth, their alignment, and the overall 
structure of the mouth provide evidence that can identify a specific person. Dental records such 
as x-rays and dental casts allow a forensic odontologist to compare a set of dental remains with 
an alleged victim. Another application of forensic odontology in a criminal investigation is bite 
mark analysis (Figure 3.21). A forensic odontologist can analyze the marks left on a victim and 
compare them with the tooth structures of a suspect to make a comparison.

Figure 3.20 Insects found on a dead animal (left). Blow fly specimen. This insect is commonly 
encountered at crime scenes (right). (Courtesy of K. Wendler.)

Figure 3.19 Human skull recovered at the scene. (Courtesy of H. Brewster.)
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3.4 Brief History of the Development of Forensic Biology
The developmental history of modern forensic biology spans three stages: (1) antigen poly-
morphism, (2) protein polymorphism, and (3) DNA polymorphism. Figure 3.22 illustrates this 
history.

3.4.1 Antigen Polymorphism
The human ABO blood groups were discovered in 1900 by Karl Landsteiner in a study of the 
causes of blood transfusion reactions. Landsteiner’s discovery made blood transfusions feasible, 
and he received the Nobel Prize in 1930 when he revealed the four groups of human blood cells 
designated A, B, AB, and O. By the 1960s, a dozen more blood group systems had been charac-
terized, and at least 29 systems are currently known (Chapter 18).
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Figure 3.22 A brief history of the development of forensic biology. (From Jobling, M.A. and Gill, P., 
Nat Rev Genet, 5, 739–751, 2004. With permission.)

Figure 3.21 A dental cast can be utilized for identifying bite marks. (© Richard C. Li.)
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Subsequent studies found that the blood types in the ABO system were inherited, and the fre-
quencies with which the four types appeared in specific human populations were found to differ. 
This led to the discovery of the first antigen polymorphic marker for use in human identification 
in forensic cases. In the past, forensic laboratories utilized blood group systems in a discipline 
known as forensic serology. While it is possible to exclude a suspect through the use of blood 
group typing, the evidence for the inclusion of a suspect is weak due to the high probability of a 
coincidental match between two unrelated persons.

3.4.2 Protein Polymorphism
Because of the limitations of antigen polymorphism, protein polymorphism was introduced 
for forensic identification (Chapter 18). Initially, a few polymorphisms in serum proteins and 
erythrocyte enzymes were reported. By the 1980s, however, approximately a hundred protein 
polymorphisms had been discovered. A few systems were commonly used in forensic laborato-
ries, including the polymorphisms of erythrocyte enzymes, serum proteins, and hemoglobin. 
Blood groups and protein polymorphism analysis were combined in forensic investigations to 
lower the probability of a match between two unrelated individuals. However, more powerful 
methods were still sought.

3.4.3 DNA Polymorphism
The human genome contains all the necessary biological information for cellular and organ 
structure and function. It consists of the nuclear genome and the mitochondrial genome 
(Chapter 23 discusses the mitochondrial genome). The human nuclear genome, a set of 23 chro-
mosomes, contains approximately 3 billion base pairs (bp). The Human Genome Project was 
initiated in 1990 to sequence the entire human nuclear genome. In 2003, 99% of the human 
genome, including the most important parts of the genome, was sequenced. Further analyses on 
the human genome sequences continue. The genome contains genes and intergenic noncoding 
sequences.

3.4.3.1 Genes and Related Sequences
Approximately 20,000–25,000 genes have been identified in the human genome, which encode 
the information for the synthesis of proteins. The functions of nearly half of these genes have 
been identified. Most encode the proteins that are responsible for the maintenance of the 
genome, the functioning of the cells, the immune response, and the structural proteins of cells.

Most human genes are discontinuous. The coding regions of genes are called exons and are 
separated by introns. During gene expression, the precursor messenger RNA transcript (pre-
mRNA), consisting of both the exons and introns, is produced. The mRNA is a template for 
protein synthesis in which the sequence is based on a complementary strand of DNA. Through 
the process of splicing, the introns are removed and the exons are joined, producing the spliced 
mRNA form, which can be used for protein synthesis via the translation process. Other gene-
related sequences include those responsible for gene transcription such as promoter sequences; 
those responsible for gene regulation such as cis-regulatory sequences (or enhancers); and 
untranslated sequences, which are transcribed but do not encode proteins. Figure 3.23 depicts 
the features of a representative human gene.

3.4.3.2 Intergenic Noncoding Sequences
More than 90% of the human genome sequence consists of intergenic noncoding sequences 
located between genes. The functions of these sequences are yet to be discovered. The intergenic 
noncoding sequences contain large quantities of various types of repetitive DNA, which falls 
into two categories: tandem repeats and genome-wide or interspersed repeats.

Tandem repeats are repeat units placed next to each other in an array. One type is called sat-
ellite DNA because of the observation of satellite bands containing DNA with tandem repeats 
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during density gradient centrifugation. Satellite DNA can be found at centromeres and telo-
meres consisting of regions composed of long stretches of tandem repeats. Minisatellites and 
microsatellites are two other types of shorter tandem repeats. Minisatellites, also known as vari-
able number tandem repeats (VNTRs), form arrays of tandem repeats with a repeat unit length 
from several to hundreds of base pairs. In a microsatellite, also known as a short tandem repeat 
(STR) or a simple sequence repeat (SSR), the repeat unit length can be 2–6 bp long.

Mobile elements (interspersed repeats) are randomly located throughout the human genome 
(Figure 3.24). Two human types have been characterized: DNA transposons and retrotranspo-
sons. The mobile elements change their locations, a process called transposition, by which these 
sequences are inserted into a new site in the genome. The transposition of DNA transposons 
is through a “cut-and-paste” mechanism. During transposition, DNA transposons are excised 
from one site and inserted at a new site in the genome. In contrast, retrotransposons duplicate 
themselves during transposition and propagate throughout the genome, which is a copy-and-
paste mechanism: a copy of the original retrotransposons is generated at the new site and the 
original copy is retained. Additionally, the transposition of retrotransposons requires an RNA 
intermediate, a process called retrotransposition. Retrotransposons have two subtypes: long ter-
minal repeat (LTR) and non-LTR retroposons. The non-LTR retroposons can be further divided 
into two subtypes: long interspersed elements (LINEs) and short interspersed elements (SINEs). 
Alu elements are the most abundant type of human SINE. There are more than one million cop-
ies of Alu elements in the human genome (Figure 3.25). Some members of the Alu elements are 
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Figure 3.23 Gene structure. Transcription, which can be regulated by the cis-regulatory sequence, 
is initiated at the transcription start site (arrow) near the promoter. The exons, noncoding introns, 
and the untranslated sequences are also shown. (© Richard C. Li.)

DNA
transposons

Mobile
elements

Retro-
transposons LINEs

SINEs

tRNA
derived

Alu J

Alu S

Alu Y

Alu Ya

Alu Yb

Alu Yc

5S rRNA
derived

Alu (7SL RNA
derived)

LTR retro-
transposons

Non-LTR retro-
transposons

Figure 3.24 Mobile elements classification. (© Richard C. Li.)
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polymorphic for the presence or absence of insertion that can potentially be used for forensic 
human identification (Figure 3.26).

3.4.3.3 Human DNA Polymorphic Markers
Most individual human genome sequences are very similar. However, variations in sequences 
do occur. The differences between individual genomes that occur at the DNA level are called 
DNA polymorphisms. In particular, a DNA polymorphism with alternative forms of a chromo-
somal locus that differ in nucleotide sequence is known as a sequence polymorphism. A DNA 
polymorphism that differs in the numbers of tandem repeat units is known as a length poly-
morphism. A DNA polymorphism can occur anywhere in a genome including genes and other 
chromosomal locations. Many DNA polymorphisms are useful for genetic mapping studies and 
hence are called DNA markers. DNA polymorphisms form the basis of forensic DNA profiling. 
The focus of this text is on the human genome, but polymorphisms also occur in the genomes 
of other organisms.

Most DNA polymorphisms are single nucleotide polymorphisms (SNPs) involving a single-
base-pair change or a point mutation. Over one million SNPs have been identified. SNPs arise 
by spontaneous mutation. Most SNPs occur in noncoding regions of the genome, although some 
appear in coding regions as well. Other forms of DNA polymorphisms are tandem repeats such 
as STRs and VNTRs. Although their biological functions are unknown, STRs and VNTRs are 
very useful for forensic DNA analysis. Many are highly polymorphic, and the number of repeat 
units varies greatly among different individuals of a population. It is unlikely that two unrelated 
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Figure 3.25 Structure of Alu elements. The name, Alu elements, was given since these elements 
usually contain DNA sequences cleaved by the restriction enzyme AluI. The Alu element is a dimeric 
structure including two regions separated by an A-rich sequence. The 5′ region has boxes A and 
B containing RNA polymerase III promoter sequences. The 3′ region contains a 31-nucleotide 
insertion. There is a short polyadenylation tail located at the 3′ end of the Alu element (terminal 
A-stretch). Full-length Alu elements are approximately 300 bp long. (© Richard C. Li.)
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Figure 3.26 Detecting Alu element insertion polymorphism for human identification. The Alu ele-
ment insertion site is amplified using the polymerase chain reaction assay. The presence and 
absence of the Alu element at the site can be detected based on the length of the DNA fragment 
analyzed. F, forward primer; R, reverse primer. (© Richard C. Li.)
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individuals will have exactly the same combination of STR or VNTR polymorphisms if sufficient 
markers are examined. Thus, a resulting genetic profile can be used for human identification.

Alternative forms of DNA polymorphisms are called alleles. The same allele present in both 
homologous chromosomes is referred to as homozygous. Two different alleles present in homolo-
gous chromosomes are referred to as heterozygous. A combination of alleles at a given locus is a 
genotype. In forensic analysis, the genotype for a panel of analyzed loci is called the DNA profile.

3.4.3.4 Forensic DNA Polymorphism Profiling
In 1984, Sir Alec Jeffreys (Figure 3.27) developed a DNA profiling technique using a VNTR tech-
nique involving multilocus profiling and later followed by single-locus profiling (Chapter 19). 
This technique led to the solving of a double murder that had been committed in Leicestershire 
(United Kingdom) in the 1980s. The case was the first to apply DNA evidence to a criminal 
investigation. During the investigation, DNA profiling not only identified the true perpetrator 
but it also excluded an innocent suspect. This case demonstrated DNA profiling’s great potential 
in forensic investigations.

DNA profiling offered a number of advantages compared with earlier systems. The most 
important is the ability of the technique to reveal far greater individual variability in DNA than 
can be revealed by antigen and protein polymorphic markers. The probability of two unrelated 
individuals having the same DNA profile is very low. The great variability of DNA polymor-
phisms has made it possible to offer strong support for concluding that DNA from a suspect and 
from a crime scene originated from the same source. This technique was subsequently imple-
mented in forensic laboratories worldwide.

In the mid-1980s, Kary Mullis and his coworkers developed the polymerase chain reaction 
(PCR) technique, which amplifies a small quantity of DNA. Mullis’s invention had a powerful 
impact on molecular biology and earned him a Nobel Prize in 1993. Since the introduction of 
PCR, new techniques have been developed for forensic DNA testing purposes.

Figure 3.27 Sir Alec Jeffreys. (© Richard C. Li.)
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The application of PCR-based assays makes forensic DNA analysis possible when only minute 
quantities of DNA can be recovered from a crime scene, for example, from hairs and cigarette 
butts. These assays have greatly increased the sensitivity of forensic DNA testing. The first forensic 
application of a PCR-based assay utilizing SNPs at the HLA-DQA1 locus (formerly called DQα) 
was developed in 1986 (Chapter 22). One major disadvantage of the assay was the high probability 
(approximately 1 in 4000) of a match between two unrelated persons. Amplified fragment length 
polymorphism (AFLP) at the D1S80 locus has also been implemented in forensic laboratories. 
The D1S80 locus is a small-size VNTR marker that can be amplified by PCR. The HLA-DQA1 and 
AFLP assays were used for some years until the introduction of STR assays.

In the late 1990s, forensic laboratories started utilizing STR loci. STRs have a number of 
advantages compared with VNTRs. For example, STRs can be amplified by PCR because of 
their smaller size, which greatly increases the sensitivity of the assay. Furthermore, STR mark-
ers are as highly variable as VNTRs. With the application of multiple STR loci, the probability 
of a match between two unrelated persons becomes extremely low. As a result of DNA testing, 
perpetrators have been identified and wrongly convicted innocent people have been exonerated 
(Chapter 20).

In 1995, the United Kingdom established the first national DNA database for criminal inves-
tigations. By the end of 1998, several other countries, including the United States, had created 
their own national DNA databases. The United States has selected 13 STR loci for the Combined 
DNA Index System (CODIS). These national DNA databases play important roles in solving 
criminal cases.

Another technique known as mitochondrial DNA (mtDNA) profiling has also been used for 
forensic testing. mtDNA is maternally inherited genetic material and is therefore particularly 
useful for human identification. Each cell contains multiple copies of mtDNA. Thus, mtDNA typ-
ing can be useful for analysis when nuclear DNA is severely degraded or present in very limited 
amounts, such as in cases involving decomposed human remains. Alternatively, polymorphic 
markers at the Y chromosome have also been utilized for forensic DNA testing. Y chromosomal 
markers are paternally inherited so they can be used for paternity testing. These markers are also 
very useful in analyzing DNA from multiple contributors in sexual assault cases.
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4
Sources of Biological Evidence

Biological evidence analysis is one of the standard forensic examinations in the investigation 
of a wide variety of crimes. In particular, DNA evidence facilitates investigators’ efforts to link 
offenders to crime scenes by matching DNA profiles. DNA evidence can also be used to elimi-
nate suspects. The DNA evidence that is routinely encountered at crime scenes can often be cat-
egorized into several groups or types. Table 4.1 lists sources of DNA that are frequently found on 
personal items. Figures 4.1 and 4.2 illustrate representative types of evidence that are processed 
and their success rates.

4.1 Bodily Fluids
Bodily fluids and their stains are useful biological evidence for forensic, serological, and DNA 
analysis and may be useful in solving crimes. The most common bodily fluids in forensic analy-
sis are blood, seminal fluid, and saliva. Blood evidence, such as peripheral blood that circulates 
through the heart, arteries, veins, and capillaries, is one of the most common types of biological 
evidence that is found at crime scenes (Chapter 12). The fluid portion of blood is called plasma, a 
subcompartment of extracellular fluid, which is the bodily fluid outside cells. Blood contains var-
ious suspended blood cells. The cellular portion of the blood consists of erythrocytes (also known 
as red blood cells), leucocytes (also known as white blood cells), and platelets. Because mature 
human erythrocytes and platelets do not have nuclei, they are not useful sources of nuclear DNA. 
For forensic DNA profiling, the nuclear DNA in blood samples (Figure 4.3) is primarily isolated 
from leucocytes, which are nucleated. Besides peripheral blood, menstrual blood can be analyzed 
to investigate the possibility of the occurrence of a sexual assault crime (Chapter 16).

Other bodily fluids are transcellular fluids. These fluids are considered to be a subcompart-
ment of the extracellular fluid that is contained within epithelial-lined extracellular spaces. For 
example, seminal fluid (Chapter 14) and saliva (Chapter 15) stains as well as vaginal secretions 
are analyzed for the investigation of sexual assault crimes. Sometimes, urine stains and fecal 
materials (Chapter 16) are related to assault crimes as well. Sweat, which is secreted from the 
eccrine and apocrine sweat glands in the skin (Chapter 17), and cerumen, also known as earwax 
(a waxy substance secreted in the ear canal), can be potentially used for human identification. 
Fluids present in vomitus (Chapter 17) can be potentially important for forensic investigations 
of violent crimes.

4.1.1 Extracellular Nucleic Acids
Blood plasma and other various bodily fluids usually contain small amounts of nucleic acids 
(DNA or RNA) known as extracellular nucleic acids. The nucleic acids circulating in plasma 
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Table 4.1 Common Items of Evidence

Evidence Possible DNA Location Source of DNA

Baseball bat Handle Skin cells, sweat, blood, 
tissue

Hat, bandana, mask Inside surfaces Sweat, hair, skin cells, 
dandruff, saliva

Eyeglasses Nose, ear piece, lens Sweat, skin cells

Facial tissue, cotton swab Surface Mucus, blood, sweat, 
semen, earwax

Dirty laundry Surface Blood, sweat, semen, saliva

Toothpick Surface Saliva

Used cigarette Butt (filter area) Saliva

Used stamp, envelope seal Moistened area Saliva

Tape or ligature Inside or outside surface Skin cells, sweat, saliva

Bottle, can, glass Mouthpiece, rim, outer 
surface

Saliva, sweat, skin cells

Used condom Inside surface, outside 
surface

Semen, vaginal cells, rectal 
cells

Bed linen Surface Sweat, hair, semen, saliva, 
blood

Through-and-through bullet Outside surface Blood, tissue

Bite mark Skin surface Saliva

Fingernail, partial fingernail Scrapings Blood, sweat, tissue, skin 
cells

Source: National Institute of Justice. Using DNA to solve cold cases, Special Report, 2002, 
US Department of Justice, Office of Justice Programs, Washington, DC.

Saliva
27.1%

Cigarette butts
24.0%

Chewing gum
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Transferred
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15.6%

Blood
26.1%
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5.2%

Figure 4.1 Representative types of evidence samples. Data compiled from the third quarter 2005 
(July–September) results for all police forces in England and Wales. (Adapted from Bond, J.W., 
J Forensic Sci, 52, 128–136, 2007.)
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are referred to as circulating nucleic acids; the nucleic acids that are found in other body fluids, 
such as saliva and urine, are referred to as cell-free nucleic acids. Extracellular nucleic acids can 
remain soluble or form complexes with proteins and lipids.

The potential sources of extracellular nucleic acids are extracellular vesicles (EVs). EVs are 
endogenous vesicular structures, containing proteins and nucleic acids that are secreted by most 
eukaryotic cells (Figure 4.4). There are many types of EVs, including exosomes and microvesicles, 
which can be detected in bodily fluids. Exosomes are one potential source of extracellular nucleic 
acids. Exosomes are derived from multivesicular bodies (MVBs), which are intracellular organ-
elles of the endocytic pathway (Figure 4.4a). MVBs fuse with the plasma membrane. As a result, 
the vesicles are released into the extracellular compartment as exosomes. Microvesicles, also 
called shed vesicles or ectosomes, are another possibility. Microvesicles shed from the plasma 
membrane and thus carry along membrane and cytosolic materials including nucleic acids 
(Figure 4.4b). Apoptotic bodies are a special type of microvesicle that is formed in apoptotic cells. 
During apoptosis, a process of programmed cell death, cells shrink and eventually form apop-
totic bodies (Figure 4.5). Apoptotic bodies contain fragmented DNA by nucleolytic degradation 
that resembles similar characteristics to those observed in extracellular nucleic acids. However, 
messenger RNA (mRNA) within apoptotic bodies is protected from RNase degradation. These 
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Figure 4.2 Success rate of obtaining suitable profiles from processed samples for submitting to 
DNA databases. Data are from the third-quarter 2005 (July–September) results for all police forces 
in England and Wales. (Adapted from Bond, J.W., J Forensic Sci, 52, 128–136, 2007.)

Figure 4.3 Biosafety cabinet for the extraction of DNA from biological evidence (left). Blood samples 
to be processed in a biosafety cabinet for DNA isolation (right). (© Richard C. Li.)
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Figure 4.4 Exosomes and microvesicles released from healthy cells. (a) Exosomes are derived 
from the endocytic pathway. In the endocytic pathway, clathrin-coated vesicles (CCV) are formed at 
the plasma membrane. The endocytic vesicles are then formed through endocytosis and are trans-
ported to early endosomes. Multivesicular bodies (MVBs) containing intraluminal vesicles (ILVs) are 
then developed from early endosomes. Through the exocytic fusion of the MVB membrane with the 
plasma membrane of the cell, exosomes, containing cellular components including nucleic acids, 
are released to the extracellular space. (b) Microvesicles are derived from the budding of vesicles 
from the plasma membrane. Microvesicles are then shed from the plasma membrane carrying along 
cellular components including nucleic acids that are present in the cytoplasm. (© Richard C. Li.)

Figure  4.5 Apoptotic bodies released during apoptosis. During apoptosis, the preapoptotic cell 
(left) undergoes morphological changes. The early apoptotic cell (middle) shows deformation: the cell 
shrinks, the membrane blebs, and chromatin condense. The late apoptotic cells (right) are fragmented, 
releasing apoptotic bodies, which contain cytosol and organelles, and nuclear fragments. In addition, 
proteolytic enzymes are activated that cleave the genomic DNA into fragments. (© Richard C. Li.)
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extracellular nucleic acids are potentially useful sources for the forensic identification of bodily 
fluids and for forensic DNA profiling.

4.2 Cells
4.2.1 Cell Surface Markers
Many of the forensic markers that are analyzed in forensic laboratories are from cells, the build-
ing blocks of the human body. All cells have membranes, also known as plasma membranes, 
which constitute their outer boundaries (Figure 4.6). The functions of cell membranes include 
exchanges with the environment, signal transduction, and structural support. The cell mem-
brane is a phospholipid bilayer containing lipids, proteins, and carbohydrates. Membrane pro-
teins can act as enzymes, receptors, or ion channels. Many cells also have carbohydrate-rich 
molecules, including proteoglycans, glycoproteins, and glycolipids, on their membrane surfaces 
(Figure 4.6). Many of these molecules act as cell surface antigens (Chapter 18).

4.2.2 Nucleated Cells
Probative biological evidence usually contains nucleated cells. The nucleus (Figure 4.7) is sur-
rounded by a nuclear envelope and contains chromosomes and a nucleolus. A nucleolus is a 
dense, non-membrane-bound structure due to its high RNA content. The function of a nucleo-
lus is to transcribe ribosomal RNA and to form ribosomes.

There are two types of cells in the body: sex cells (sperm and oocytes) and somatic cells 
(all other types). Spermatozoa and ova, which are formed by germ cells, are called gametes. 
In humans, each gamete is haploid, containing 22 autosomes (chromosomes other than sex 
chromosomes) plus one sex chromosome. In ova, the sex chromosome is always an X, while in 
spermatozoa it may be an X or a Y. After fertilization, the zygote, which is the fertilized egg 
cell formed when two gamete cells are joined, becomes diploid as a result of the fusion of the 
haploid spermatozoon and ovum. Most of the other cells of the body, known as somatic cells, are 
diploid. This means that they have two copies of each autosome plus two sex chromosomes, XX 
for females or XY for males. This results in a total of 46 chromosomes per diploid cell. The two 
chromosomes of a pair in a diploid cell are homologous chromosomes. One of the homologous 
chromosomes is inherited from the spermatozoon and the other from the ovum.

Extracellular fluid
Glycoprotein Glycolipid

Cytoskeleton Integral protein Peripheral
protein

Cytoplasm

Figure 4.6 Cell membrane and carbohydrate-containing glycoproteins and glycolipids. (© Richard 
C. Li.)
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Although most somatic cells are diploid, exceptions exist. Some differentiated cells such as 
red blood cells and platelets have no nuclei and are designated nulliploid. A few other cells have 
more than two sets of chromosomes as a result of DNA replication without cell division and 
are referred to as polyploid. For example, the regenerating cells of the liver and other tissues are 
naturally tetraploid, while the giant megakaryocytes of the bone marrow may contain 8, 16, or 
even 32 copies of chromosomes.

The nuclear chromosomes of humans consist of complexes of DNA, histone proteins, and 
nonhistone chromosomal proteins. Each chromosome consists of one linear, double-stranded 
DNA molecule. The large amounts of DNA present in the human chromosome are compacted 
by their association with histones into nucleosomes and even further compacted by higher levels 
of folding of the nucleosomes into chromatin fibers. Each chromosome contains a large number 
of looped domains of chromatin fibers attached to a protein scaffold.

The degree of DNA packing varies throughout the cell cycle. During the metaphase of mitosis 
and meiosis of the cell cycle, chromatin is the most condensed. Two forms of chromatin have 
been defined on the basis of their chromosome-staining properties. Euchromatin regions are 
areas of chromosomes that undergo normal chromosome condensation and decondensation 
during the cell cycle. The intensity of staining of euchromatin is darkest in the metaphase and 
lightest in the synthesis (S) phase. Euchromatic regions account for most of the genome and lack 
repetitive DNA. Usually, the genes within the euchromatin can be expressed. Heterochromatin 
comprises the chromosomal regions that usually remain condensed throughout the cell cycle. 
It contains repetitive DNA and can be found at centromeres, much of the Y chromosome long 
arm, and the short arms of the acrocentric chromosomes (chromosomes with centromeres near 
one end). Genes within heterochromatic DNA are usually inactive.
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Figure 4.7 A cross-sectional view of a cell. 1, Microvilli; 2, cilia; 3, cytoskeleton; 4, centrioles; 
5, mitochondrium; 6, smooth endoplasmic reticulum; 7, rough endoplasmic reticulum; 8, nucleolus; 
9, peroxisome; 10, vesicle; 11, Golgi apparatus; and 12, lysosome. (© Richard C. Li.)
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Each human chromosome has a short arm, designated p (for petit), and a long arm, designated 
q (for queue), separated by a centromere (Figure 4.8). Centromeres are the DNA sequences that 
are found near the points of attachment of mitotic or meiotic spindle fibers. The centromere 
region of each chromosome is responsible for accurately segregating the replicated chromosomes 
to daughter cells during cell divisions. The ends of the chromosome are called telomeres and they 
help stabilize the chromosome and play a role in the replication of DNA in the chromosome.

Chemical staining of metaphase chromosomes results in an alternating dark and light band-
ing pattern (cytogenetic banding) that can be seen under a microscope. Each chromosome arm 
is divided into regions based on the cytogenic bands. This process is known as cytogenetic map-
ping. The cytogenetic bands are labeled p1, p2, p3, q1, q2, q3, and so on, counting from the centro-
mere out toward the telomeres. At higher resolutions, subbands can be observed. For example, 
the cytogenetic map location of a gene termed AMELY (amelogenin, Y-linked; Chapter 21) is 
Yp11.2, which indicates its location on chromosome Y, p arm, band 11, subband 2. The visually 
distinct banding pattern gives each chromosome a unique appearance. Recently, the cytogenic 
map has been integrated with the human genome sequence to allow the determination of the 
positions of cytogenetic bands within the DNA sequence.

Chromosomes can be identified on the basis of the size and the positions of the centromeres 
and cytogenetic banding patterns. The chromosome constitution is described as a karyotype 
and can be displayed as a karyogram, which includes the total number of chromosomes and 
the sex chromosome composition (Figure 4.9). Chromosomes are numbered in order of their 
size, with chromosome 1 as the largest (except chromosome 21 is smaller than 22). In the cases 
of chromosomal abnormality, the karyotype can also reflect the type of abnormality and allow 
visualization of the affected chromosome bands.

4.2.3 Mitochondria and Other Organelles
The cytoplasm contains the cytosol fluid in which organelles are suspended (Figure 4.7). Multiple 
copies of mitochondria are located within the cytoplasm. Mitochondria are surrounded by phos-
pholipid membranes that separate them from the cytosol. The mitochondria are responsible 
for energy production through aerobic metabolism by producing molecules containing high-
energy bonds, such as adenosine triphosphate (ATP). Mitochondria have their own genome, 
which can be analyzed for human identification (Chapter 23).
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Figure 4.8 The ideogram of a human chromosome and cytogenetic banding nomenclature. The 
cytogenetic banding pattern is shown after chemical staining such as G-banding, which treats chro-
mosomes with Giemsa dye. The short arm is designated p; the long arm is q. The centromere, p 
telomere (p-tel), and q telomere (q-tel) are also shown. G-bands at increasing resolution (from left 
to right) are shown. (© Richard C. Li.)
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Two types of endoplasmic reticulum (ER) can exist within the cytoplasm: the smooth ER 
(SER) is involved in lipid synthesis; the rough ER (RER) contains ribosomes on its outer surface 
and forms transport vesicles. The Golgi apparatus is responsible for the production of secretory 
vesicles and new membrane components, and also for the packaging of lysosomes (vesicles con-
taining digestive enzymes for the degradation of injured cells). Peroxisomes carry enzymes that 
neutralize potentially harmful free radicals. Other organelles found within the cytoplasm of 
eukaryotic cells include the cytoskeleton, microvilli, centrioles, and cilia.

4.2.4 Cytosol
4.2.4.1 Messenger RNAs
The chromosomal DNA contains genes that encode for specific proteins. The genetic code is 
read as an array of triplet codes, a sequence of three bases that specifies the identity of a single 
amino acid. As gene expression is activated, transcription occurs in which precursor mRNA 
(pre-mRNA) is produced from a DNA template. After transcription, the pre-mRNA is capped, 
polyadenylated, and spliced to form matured mRNA. Only the matured mRNA is transported 
from the nucleus to the cytoplasm. Tissue-specific mRNA can be potentially used for the iden-
tification of biological evidence (Chapter 11). The proteins are synthesized in a process known 
as translation, in which amino acids are assembled based on the codons derived from the triplet 
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Figure 4.9 Human karyogram. The chromosomes are numbered. Cytogenic patterns show alternat-
ing dark and light bands (From www.genome.gov). Centromeres (in red) are shown.
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code of the DNA contained in the sequence of the mRNA strand. Various components including 
the ribosomal complex are involved in translation. The cytosol also contains many proteins that 
can be used for the identification of bodily fluids (Chapters 11 and 12).

4.2.4.2 MicroRNAs
MicroRNAs (miRNAs) are short RNA molecules that are 21–23 nucleotides in length. In 
eukaryotic organisms, miRNAs function as negative regulators of gene expression. They play 
roles in development and cell differentiation. Additionally, the altered expression of miRNAs 
can be detected in many human diseases. The biological function and the potential application 
of miRNAs in forensic biology are discussed in Chapter 11.

It is estimated that the human genome may encode approximately 1000 miRNAs. Based on 
their genomic location and structure, miRNAs can be characterized into three types: intergenic, 
intronic, and exonic (Figure 4.10). Intergenic miRNA genes are distinct transcriptional units 
that are found in genomic regions. In humans, most of the intergenic miRNA genes have a 
transcription start site and a polyadenylation site. Intronic miRNAs reside within the introns of 
protein-coding and noncoding genes. The orientation of the intronic miRNAs can be the same 
as that of the sense (coding) strand of a host gene or that of the antisense strand (complemen-
tary to the sense strand) of a host gene. Sense intronic miRNAs are transcribed from the same 
promoter as their host genes. The antisense intronic miRNAs are transcribed from their own 
promoters. Exonic miRNAs are rare in eukaryotic genomes and reside in genomic regions that 
overlap with an exon and an intron of a pseudogene, which is a noncoding gene or is no longer 
transcribed. These miRNAs are also transcribed from their host gene promoter. miRNAs can 
also be monocistronic or polycistronic. A monocistronic miRNA has a single transcriptional 
unit with its own promoter. In polycistronic miRNAs, several miRNAs reside as a cluster of 
transcriptional units with a shared promoter.

The biogenesis of miRNAs begins in the nucleus. miRNAs are transcribed by RNA poly-
merase II. Nascent transcripts, referred to as primary transcripts (pri-miRNAs), can be sev-
eral hundreds to thousands of nucleotides in length. The pri-miRNAs have a hairpin secondary 
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Figure 4.10 The genomic location and the structure of miRNAs. (a) An intergenic miRNA gene, 
(b) a sense intronic miRNA gene, (c) an antisense intronic miRNA gene, (d) an exonic miRNA gene, 
(e) a monocistronic miRNA gene, and (f) polycistronic miRNA genes. Exons (gray), introns (white), and 
miRNA genes (red) are shown. (© Richard C. Li.)
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structure that is approximately 70 nucleotides long with imperfect base pairing in the stem. 
miRNA processing is initiated in the nucleus (Figure 4.11). The hairpin region of a pri-miRNA 
is then cleaved from the pri-miRNA by the nuclear RNase III endonuclease, Drosha. As a result, 
a pre-miRNA is formed. The pre-miRNA is transported from the nucleus to the cytoplasm by a 
nuclear transporter, Exportin 5. In the cytoplasm, a cytoplasmic RNAse III–like endonuclease, 
Dicer, cleaves the pre-miRNA to generate a double-stranded miRNA that is approximately 21–23 
nucleotides in length. The mature miRNA strand is bound to the Argonaut protein to assemble 
the RNA-induced silencing complex (RISC). The complementary RNA strand is degraded.

A specific miRNA is designated with a prefix. The prefix for a mature miRNA is a capi-
talized “miR,” while the prefix for a pre-miRNA is an uncapitalized “mir.” The prefix “miR” 
is followed by a dash and a number (e.g., miR-135). Experimentally confirmed miRNAs are 
sequentially numbered and are deposited in the miRBase, which is a database that archives 
miRNA sequences and annotations.
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Figure 4.11 The biogenesis of miRNAs. In the nucleus, the pri-miRNA (primary transcript) is pro-
cessed by Drosha (nuclear RNase for double-stranded RNA) and DGCR (nuclear double-stranded 
RNA-binding protein), forming the pre-miRNA. The pre-miRNA is transported from the nucleus to 
the cytoplasm by the exportin. In the cytoplasm, the pre-miRNA is further processed by Dicer (cyto-
plasmic RNase for double-stranded RNA) and TRBP (cytoplasmic double-stranded RNA-binding 
protein). The mature miRNA strand is bound to the Argonaut protein to assemble the RISC (RNA-
induced silencing complex). (© Richard C. Li.)
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4.3 Tissues
4.3.1 Skin
4.3.1.1 Biology of Skin
The biological evidence related to skin is important in forensic investigations. For example, fin-
gerprints are ridge skin impressions that are usually collected at crime scenes, and shed skin 
tissue is a source of DNA for human identification. The skin covers the entire body surface. 
Additionally, the skin contains specialized structures that include sebaceous and sweat glands, 
hair follicles, and nails. The thickness of skin varies throughout the body. The skin of the dorsal 
area of the body is usually thicker than that of the ventral area of the body. The skin consists of 
different layers (Figure 4.12). The epidermis is the outer layer of the skin. The epidermis also con-
tains melanocytes that produce the skin pigment melanin. The dermis is the middle layer of the 
skin. It is filled with fibrous collagen proteins secreted by fibroblasts and contains hair follicles 
and sweat glands. Additionally, it contains blood, lymph vessels, and nerves. The subcutaneous 
layer is the deepest layer of the skin. The subcutaneous layer consists of collagen networks and 
adipose tissue to prevent loss of heat.

The epidermis is a multilayered tissue that includes a number of morphologically distinct 
zones: the basal, the spinous, the granular, and the cornified layers (Figure 4.12). The epidermis 
renews continually through the proliferation and differentiation of keratinocytes. The basal layer 
contains newly formed keratinocytes that are proliferative. Epidermal differentiation begins with 
the migration of the keratinocytes from the basal layer toward the outer layer of skin. Once the 
migrating keratinocytes reach the spinous and granular layers, the keratinocytes become nonpro-
liferating and partially differentiated. As the cells reach the cornified layer, these cells are filled 
with keratin filaments and are differentiated into corneocytes, which are dead, and terminally 
differentiated keratinocytes. In the course of differentiation, the cells are flattened, and all organ-
elles including the nucleus are lost. The corneocytes are then shed from the skin surface.

4.3.1.2 Skin as Source of DNA Evidence
Evidence from skin contact, also referred to as touched evidence, can be collected and used for 
forensic DNA analysis. One example of this evidence is shed skin cells that are found on worn 
clothing, which is frequently encountered in crime scene investigations. For instance, a perpe-
trator’s shed skin cells that are deposited on worn clothing are potential evidence to be collected. 
After collection, a DNA profile can be obtained from shed skin cells, providing the forensic evi-
dence or “lead” that is required for the criminal investigation. Touched evidence becomes more 
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Figure 4.12 A sectional view of the skin. Multilayered epidermis tissues are shown. (© Richard 
C. Li.)
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useful and important when no other type of evidence (e.g., a fingerprint, bloodstain, or seminal 
stain) can be collected at the crime scene, especially for the investigation of certain criminal 
cases such as cold cases and property crimes such as theft and burglary (Figures 4.13 through 
4.15). Touched evidence usually contains minute quantities of nuclear DNA. DNA recovered 
from touched evidence is referred to as transfer DNA. However, the source of DNA transferred 
through physical contact is not well understood. Although the shed skin cells from touched evi-
dence lack nuclei, these cells may contain DNA remnants from partial degradation during the 
differentiation process. These can be a possible DNA source. Additionally, the sweat glands in 
the skin produce sweat. When the skin makes contact with an item, a residue of sweat is left on 
the surface of the item. It is known that sweat contains cell-free DNA. Thus, cell-free DNA from 
sweat is another possible source of DNA. Furthermore, a small number of nucleated cells can 
be observed in touched evidence. These cells possibly originated from sweat glands and ducts.

4.3.2 Hair
Hairs, including scalp and pubic hairs, frequently constitute biological evidence that is found 
at crime scenes, and their identification can be of great forensic importance. Formerly, the 

Figure 4.13 Evidence collection using swabbing. The evidence from skin contact for forensic DNA 
analysis is usually collected by swabbing. More DNA can be recovered when evidence is collected with 
a double swab method than with a single swab. The double swab method involves applying a moist-
ened cotton swab followed by a second dry cotton swab onto the same target surface of evidence. The 
target surface is swabbed using a moistened swab first. The moisture left by the first swab is absorbed 
by the second dry swab. Both swabs can be pooled for DNA extraction. (© Richard C. Li.)
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principal methods that were utilized in forensic hair analysis were limited to morphological 
analysis and comparisons. Since then, protein polymorphisms provide some potential for iden-
tifying individuals from single hairs. However, human hairs contain DNA and as a DNA source 
they may be used for forensic analysis. The development of the polymerase chain reaction (PCR) 
amplification technique made it possible to analyze very small quantities of DNA in hair, and 
the use of hair as evidence of identification has become more significant.

4.3.2.1 Biology of Hair
The human hair shaft is a keratinized cylindrical structure (Figure 4.16). The center or core of the 
hair is called the medulla, which is present in the majority of hairs. The medulla is surrounded 
by a cortex, which is the outer layer of the hair shaft. The cuticle consists of overlapping layers of 
flattened keratinized cells that protect the hair. Hairs are produced in hair follicles (Figures 4.17 
and 4.18). Each hair follicle is located deep in the dermis (a skin layer beneath the epidermis) and 
opens onto the surface of the epidermis (the outer layer of the skin). The hair follicle is composed 

Figure 4.14 A worn glove as a source of DNA evidence. Shed skin cells on a worn glove can poten-
tially generate DNA profiles. (© Richard C. Li.)

Figure 4.15 A cigarette butt as a source of DNA evidence. Shed cells left behind on a cigarette 
butt can be a source of DNA. A portion (~1 cm2) of the filter paper of a smoked cigarette butt can 
be cut for isolating DNA. (© Richard C. Li.)
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of the bulge and the bulb regions. The bulge exports the stem cells that migrate down and give 
rise to bulb cells. The bulge also produces the stem cells that migrate up to form skin cells. The 
matrix cells, which generate the hair shaft cells, are located at the lower portion of the bulb. The 
dermal papilla is situated at the base of the bulb and contains cells that regulate hair growth, 
which are nourished by blood vessels and nerves. The growing hair shaft is surrounded by two 
concentric layers of cells, which are referred to as the inner root sheath and the outer root sheath, 
respectively. The entire hair follicle is surrounded by a connective tissue sheath.

Human scalp hairs grow for a few years and shed according to the hair follicle cycle 
(Figures 4.19 through 4.21). A human scalp hair can grow at its highest rate of approximately 
1 mm per day. The growing phase of hair is called the anagen phase. The matrix cells undergo 
rapid proliferation and eventually become differentiated cells such as hair shaft cells. As a hair 
grows, it is pushed toward the surface of the skin and becomes longer. During the migration 
upward, keratinization occurs as cells are filled with fibril keratin proteins. In these keratinizing 
cells, nuclei are absent. However, mitochondrial remnants can be observed. By the time a hair 
approaches the skin surface, cell death occurs at the medulla, cortex, and cuticle. At the end of 
the anagen phase, the matrix cells enter the catagen phase and undergo cell death, thus leading 
to the regression of the bulb. Hair follicles then enter the telogen phase: the stage of rest. When 
another cycle begins, the follicle produces a new bulb and the telogenic hair, also known as the 
club hair, is pushed to the surface and shed. On average, an adult loses approximately dozens of 
hairs daily.

Hair shaft

Sebaceous gland
Hair follicle

Dermis

Epidermis

Figure 4.17 Longitudinal section view of a scalp hair follicle with accessory structures. (© Richard 
C. Li.)

Cuticle

Cortex

Medulla

Figure 4.16 A sectional view of a hair shaft. (© Richard C. Li.)
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4.3.2.2 Hair as Source of DNA Evidence
The isolation of DNA from intact hair roots is routinely used in nuclear DNA analysis. In com-
parison, the quantities of DNA in telogen hair roots are considerably less than the DNA that 
is found in the roots of anagen hairs. Nuclear DNA analysis is usually accomplished by using 
freshly plucked hair roots (Figures 4.22 and 4.23) because cells at the root region may contain 
nuclear DNA. Unfortunately, most human hairs recovered from crime scenes are shed naturally 
(in the telogen phase) and contain little nuclear DNA (Figure 4.24). Thus, multiple telogen hairs 
with roots are necessary to isolate enough nuclear DNA. However, shed hairs that are found 
at crime scenes may be derived from different individuals. Therefore, the ability to perform a 
forensic DNA analysis of a single shed hair would be highly desirable. Nuclear DNA isolation 
from hair shafts is still far less reliable because hair shafts contain very low amounts of nuclear 
DNA. In addition, variations in the amounts of DNA isolated from hair shafts are observed in 
a comparison between different hairs from the same head and hairs from different individuals.

A hair follicle cell contains multiple copies of mitochondria. As a result, mitochondrial DNA 
(mtDNA) can be successfully isolated from hair roots. Additionally, mtDNA is embedded in the 
keratin matrix of hair shaft cells, which protects the mtDNA molecules from degradation. Thus, 
mtDNA can also be isolated from hair shafts. A sequence polymorphism analysis of mtDNA from 
hair can be carried out. mtDNA is maternally inherited, which is useful to identify maternal rela-
tives but cannot be used to perform paternity testing. Additionally, the mtDNA profiling results are 
not as discriminating as nuclear DNA profiling. Furthermore, mtDNA analysis is time-consuming. 
Therefore, the typing of nuclear DNA from hair would be preferable for forensic DNA analysis.

Sometimes, a mixture of more than one mtDNA sequence in the same individual is observed. 
This heterogeneous pool of mtDNA molecules is referred to as heteroplasmy. In hair, it is 
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Figure 4.18 Structure of an anagen-phase hair follicle. The diagram shows the hair follicle struc-
ture including the dermal papilla, sebaceous gland, bulge, bulb, and hair shaft. Concentric layers 
of the outer root sheath (ORS), the inner root sheath (IRS), and the hair shaft are also shown. 
(© Richard C. Li)
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believed that it is due to a mixture of mtDNA molecules from keratinocyte and melanocyte-
derived mitochondria (Figure 4.25). Hair follicle melanocytes are formed at the beginning of 
each hair cycle and die at the end of the cycle. Melanocytes are located in the bulb hair follicle. 
Hair melanocytes play roles in hair pigmentation, which determine hair color. Melanin, which 
is produced by the melanocytes, is contained in an organelle called the melanosome. The mela-
nosomes are transferred to neighboring keratinocytes though dendritic processes. In addition 
to melanosomes, the melanocyte mitochondria can also be transferred to keratinocytes. Thus, 
the keratinized cells in the hair shaft may carry more than one type of mitochondria, one from 
the keratinocytes and the other from the melanocytes. As a result, heteroplasmy of a mixture of 
different mtDNA molecules, with different DNA sequences, can occur in hairs.

4.3.3 Bone
4.3.3.1 Biology of Bone
The bodies of human remains begin to decompose shortly after death. The rate of decomposi-
tion of human remains varies greatly with environmental conditions such as climate, bacterial 
growth, and the presence of insects and other animal scavengers. However, soft tissues may be 
lost first while more stable bone tissues may remain. Identifying human skeletal remains can be 
applied in a variety of cases including mass fatality incidents, missing persons, fires, explosions, 
and violent crime cases involving skeletal remains.

An adult human skeleton consists of 206 bones (Figures 4.26 and 4.27). The shaft of a long 
bone, such as an arm or a leg bone, consists largely of an outer layer of cortical (or compact) 
bone, which is solid and strong. The shaft of a long bone forms a marrow cavity, which is filled 
with a specialized type of connective tissue called bone marrow. The portion at each end of a 
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Figure 4.19 Diagrammatic representation of the scalp hair cycle. The morphological characteris-
tics of a hair follicle are shown in three distinct phases encompassing the entire hair cycle: anagen 
(including early and full anagen), catagen, and telogen. DP, dermal papilla; M, matrix; ORS, outer 
root sheath; SG, sebaceous gland. (© Richard C. Li.)
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long bone is called the epiphysis, which is composed largely of cancellous (or spongy) bone, and 
can bear the force of compression. A flat bone can have primarily either cortical or cancellous 
bone. For instance, a rib consists of primarily cancellous bone surrounded by a thin layer of 
cortical bone. A skull bone usually consists of largely cortical bone.

Bone, which is a connective tissue, contains a matrix and cells. The bone matrix consists of 
an inorganic and an organic matrix. Calcium and phosphorus are the major components of 
the inorganic matrix, which consists mainly of hydroxyapatite crystals, Ca10(PO4)6(OH)2. The 
organic matrix consists of collagens, primarily type I collagen, which are insoluble fibrous pro-
teins. With the deposition of calcium hydroxyapatite crystals around the collagen fibrils, bone 
becomes a weight-bearing hard tissue.

(a) (b)

Figure 4.21 Cross-sectional view of hair follicles. (a) Early anagen and (b) full anagen. Note that 
the new hair (arrow) and the club hair are shown. (© Richard C. Li.)

(a)

(c)

(b)

(d)

Figure 4.20 Longitudinal section view of a scalp hair follicle during the hair cycle. (a) Early ana-
gen, (b) full anagen, (c) catagen, and (d) telogen. (© Richard C. Li.)
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Developing bones contain small numbers of osteoprogenitor cells. These cells can divide to 
produce cells that differentiate into osteoblasts. Osteoblast cells regulate the calcification of the 
bone matrix. Osteoblasts that are embedded in the bone matrix are termed osteocytes and are 
the most abundant cells in bone. Osteocytes play a role in maintaining the surrounding matrix 
and repairing damaged bone. Another type of cell that can be found in bone tissues is osteo-
clasts. These cells are giant cells containing 50 or more nuclei and are responsible for dissolving 
and recycling the bone matrix.

4.3.3.2 Bone as Source of DNA Evidence
A number of methods are used to identify human remains, for example: the identification of 
facial characteristics; the recognition of individualizing scars, marks, and other special body 

Figure 4.23 Pulled dreadlocks recovered from a crime scene. (© Richard C. Li.)

Figure 4.22 Hair root of a pulled hair with visible soft tissue attached. (© Richard C. Li.)
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features; the matching of dentition with premortem dental x-rays; and the comparison of fin-
gerprints. In some situations, these methods cannot be used because of the extensive decom-
position of the remains. The mass fatality terrorist attack on the World Trade Center in 2001 
(Figure 4.28) serves as an example of a situation where common identification techniques may 
not be useful. Large quantities of compromised human skeletal fragments were recovered at the 
fatality site. In these cases, DNA typing is a powerful tool for identifying human remains.

Most DNA in cortical bone is located in the osteocytes. It has been estimated that there 
are approximately 20,000 osteocytes per cubic millimeter of calcified bone matrix. As a result, 
microgram quantities of DNA can potentially be obtained from a gram of bone. Thus, compact 
bone tissue should contain sufficient amounts of nuclear DNA for analysis. However, the skel-
etal fragments recovered from burial sites are often subjected to decomposition (Figures 4.29 
and 4.30). During the decomposition process, both nuclear and mtDNA can be degraded. 

Dendritic processes

Melanosome

Mitochondrium

Keratinocyte

Melanocyte

Figure 4.25 Scheme diagram of the melanosome transportation. Melanosomes are released into 
the extracellular space from the melanocyte dendrites through exocytosis and subsequent endocy-
tosis by keratinocytes. During the process, mitochondria originating from the melanocytes can be 
potentially transported to the keratinocytes. (© Richard C. Li.)

50 µm 50 µm 50 µm

Figure 4.24 Telogen hair roots. From left to right: telogen club root with no visible soft tissue; 
telogen hair root with some visible soft tissue; telogen hair root with visible soft tissue. (From 
Bourguignon, L. et al., Forensic Sci Int Genet, 3, 27–31, 2008. With permission.)
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Additionally, burial conditions with high humidity and temperature promote the degradation 
of DNA. Thus, the identification of partial DNA profiles or the complete failure to obtain DNA 
profiles can occur after samples from decomposed remains are analyzed.

Processing bone samples for DNA extraction is a time-consuming task (Figure 4.31). Due to 
the potential for commingled remains and contaminants that interfere with forensic analysis, a 
bone sample initially must be cleaned prior to isolating DNA. The outer surfaces of bone frag-
ments are usually removed by using a mechanical method such as sanding. However, to avoid 
cross-contamination of samples, the bone dust that is generated by sanding must be removed. 
Additionally, special protective equipment and safety procedures are necessary to protect ana-
lysts from exposure to blood-borne pathogens.

To obtain adequate quality and quantity of DNA from a bone sample, a high-yield DNA 
extraction method should be selected. The bone samples can be ground to powder to aid in 
DNA extraction (Chapter 5). The osteocytes containing DNA are embedded in a calcified bone 
matrix, which is a barrier for extracting DNA from the osteocytes. The bone matrix must be 
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Figure 4.26 Bone structure. An adult human consists of 206 bones. A long bone, such as an arm or a 
leg bone, consists of an outer cylinder of cortical bone surrounding a marrow cavity. Each end of a long 
bone is called the epiphysis, which is composed largely of cancellous bone. Flat bones have variable 
structures; for example, the skull consists mainly of cortical bone whereas the spine consists mainly of 
cancellous bone. (a) Diagram of a long bone. (b) A bone fragment. Cortical and cancellous bones are 
shown. Blood vessels can be found in the Volkmann and Haversian canals. (© Richard C. Li.)
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(a) (b)

Figure  4.27 Cross-sectional view of cortical bone. (a) The functional unit of cortical bones is 
a cylindrical structure known as osteon. Haversian canals are shown in the center of the osteon. 
(b) Detailed view of an osteon. Osteocytes (arrows) are shown within osteons. (© Richard C. Li.)

Figure 4.28 Sections of the Fire Department of New York City (FDNY) Memorial Wall. Memorial to 
the Fallen Firefighters of 9/11, at FDNY Engine Co. 10 on Liberty Street, New York, by Rambusch 
Studios. (© Richard C. Li.)
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removed to improve the yield of DNA. A decalcification method can be utilized to dissolve 
calcium ions to soften the bone tissue. Additionally, the application of proteinase can be used to 
digest the matrix proteins, thus increasing the yield of DNA that is harvested from osteocytes.

4.3.4 Teeth
4.3.4.1 Biology of Teeth
During embryonic development, two sets of teeth begin to form. The first to appear are the 
deciduous teeth or primary teeth. Most children have 20 deciduous teeth, which are later replaced 
by 32 teeth known as the secondary dentition or permanent dentition (Figure 4.32).

Figure 4.29 Human rib bone fragments recovered from burial site. (© Richard C. Li.)

Figure 4.30 Skeletal remains, exhumed from Frombork Cathedral in Poland, are thought to be 
those of astronomer Nicolaus Copernicus (1473–1543). (From Bogdanowicz, W., et al., Proc Natl 
Acad Sci U S A, 106, 12279–12282, 2009. With permission.)
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The bulk of each tooth consists of a calcified connective tissue called dentin (Figure 4.33). 
The dentin of the crown is covered by a layer of enamel. The rest of the dentin is referred to as 
radicular dentin and is covered by a layer of cementum, which separates the tooth from the sur-
rounding jawbone.

Similar to bone, tooth tissue contains a matrix. The inorganic matrix of tooth contains 
hydroxyapatite, a calcium phosphate in a crystalline form. The organic matrices of dentin and 
cementum are primarily collagens. In enamel, amelogenin is the major protein of the organic 
matrix. Other proteins include ameloblastin and enamelin, which are also the components of 
the enamel organic matrix.

The interior chamber within the tooth surrounded by dentin is known as the pulp cavity. The 
dental pulp, found within the pulp cavity, is the connective tissue made up of nerve fibers, blood 
vessels, and various cells. The blood vessels and nerves in the pulp cavity are innervated through 
the root canal, a narrow tunnel located at the root of the tooth. Incisor and cuspid teeth have 
single roots. Bicuspids have one or two roots. Molars typically have three or more roots.

The columnar cell bodies of odontoblasts are located along the peripheral dental pulp. A 
single odontoblast process, arising from each cell body of the odontoblasts, projects into the 
dentinal tubule (Figure  4.34). Odontoblasts play important roles in the formation of den-
tin. Odontoblasts secrete collagens and ground substances that are the components of the 

Figure 4.31 Tools for cutting bone samples. Osteotomes and a mallet (top), and a rotary device 
(bottom). (© Richard C. Li.)
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dentinal matrix. Additionally, odontoblasts regulate the calcification of the matrix of dentin. 
Cementoblasts are cells that play roles in forming the cementum. Cementoblasts secrete col-
lagens and ground substances to form the extracellular matrix of the cementum. Through the 
process of forming cementum, cementoblasts become trapped in the extracellular matrix. The 
cementoblasts embedded in the cementum are referred to as cementocytes. Ameloblasts are cells 
that play a role in producing enamel and are subsequently lost during tooth eruption.

4.3.4.2 Teeth as Source of DNA Evidence
The characteristics of teeth, their alignment, and the overall structure of the mouth provide 
information for identifying a person. The use of dental records such as x-rays and dental casts 
can allow dental remains to be connected to a victim. Particularly in circumstances such as 
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Figure 4.32 A sectional view of an adult tooth. (© Richard C. Li.)

Pulp cavity

Odontoblasts

Dentin

Figure 4.33 Cross-sectional view of a tooth. (© Richard C. Li.)
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decomposition, an odontological comparison is possible since the dental evidence often remains 
intact. When no antemortem dental record is available for comparison, forensic DNA testing 
can be carried out for postmortem human identification. The mineralized dental structure pro-
tects DNA from degradation in cases where it may be degraded in other tissues of the body. 
Thus, teeth are an excellent source of DNA for forensic DNA analysis under such conditions.

Dental pulp tissue contains various cells and is a suitable source of DNA. However, when 
tooth evidence has been exposed to high temperature and humid environments, decomposition 
of the pulp tissue can occur. Thus, cementoblasts within the cementum, containing both nuclei 
and mitochondria, can then be utilized as a source of DNA. Additionally, odontoblast processes 
within dentin, containing mitochondria, can also be used. Several different methods are used 
to obtain dental tissues for DNA isolation (Figure 4.35). A vertical section is cut along the longi-
tudinal axis of the tooth, which allows the dissection of the pulp, dentin, and cementum tissues 
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Figure 4.34 Odontoblast processes. See Section 4.3.4.1. (© Richard C. Li.)

(a) (b)

Figure 4.35 Tools for dissecting teeth. (© Richard C. Li.) (a) A dental chisel and a mallet. (© Richard 
C. Li.) (b) An amalgam well. (Courtesy of Dr. Ken Hermsen.)
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(Figure 4.36). A horizontal section is cut through the cementum–enamel junction of the tooth 
(Figure 4.36). The root portion can be pulverized to a fine powder for DNA isolation. The crown 
can be preserved for forensic odontological comparisons if needed. Additionally, the extraction 
of pulp tissue can be carried out by standard endodontic access (Figure 4.37). For calcified tis-
sues such as dentin and cementum, a decalcification step is needed to soften the dental matrix, 
which facilitates DNA isolation.
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5
Nucleic Acid Extraction

5.1 Basic Principles of DNA Extraction
Deoxyribonucleic acid (DNA) is a linear polynucleotide consisting of four types of monomeric 
nucleotides. Each nucleotide contains three components: a deoxyribose, a nitrogenous base, and 
a phosphate group (Figure 5.1). The four bases for DNA are adenine (A), cytosine (C), guanine 
(G), and thymine (T) (Figure 5.2). The deoxyribose is attached to the nitrogen of a base. The 
phosphate group is attached to the deoxyribose. In a polynucleotide, individual nucleotides are 
linked by phosphodiester bonds (Figure 5.3).

Interestingly, the first attempt to isolate DNA from humans, which involved the use of human 
leucocytes, was accomplished by the Swiss physician Friedrich Miescher in 1869. This study led 
to the discovery of the DNA molecule, which he referred to as “nuclein.” Over the years, various 
methods for isolating DNA from blood samples were developed. However, many protocols still 
use the basic principles Miescher developed more than 100 years ago.

This chapter introduces basic techniques for DNA extraction used in forensic laboratories 
(Table 5.1). The commonly used methods isolate total cellular DNA, which is suitable for most 
forensic DNA analyses. However, DNA extraction procedures may vary according to the type of 
biological evidence, which can include cell types, substrates, the quantity of biological evidence 
collected, and the type of test that is being performed. Specific DNA extraction procedures for 
a sample of interest can be found in the literature. The extraction method of choice yields an 
optimal quantity, quality, and purity of DNA to satisfy forensic DNA testing needs. A sufficient 
quantity of DNA ensures the generation of a complete DNA profile. Poor quality of DNA, such 
as fragmentation due to DNA degradation, may result in a partial DNA profile or a failure to 
obtain a profile. Poor purity of DNA may cause interference during subsequent DNA testing. For 
example, DNA polymerase inhibitors interfere with DNA amplification (Chapter 7). Additional 
criteria for selecting proper DNA extraction methods include adaptability to automation, 
throughput potential, simplicity, the reduction of contamination risks, and cost-effectiveness. 
The most common DNA extraction protocols include basic components discussed below.

5.1.1 Cell and Tissue Disruption
In most DNA extraction protocols, enzymatic digestions, such as those with proteinase K, are used 
for cell and tissue disruption. The disruption process can also be carried out by boiling and by using 
alkali treatment and mechanical methods (Figures 5.4 and 5.5). Materials such as bone and teeth can 
be frozen in liquid nitrogen and then ground to a fine powder with a mortar or cryogenic grinder 
such as the SPEX CertiPrep® freezer mill (Figure 5.6). In such specimens, cells containing DNA 
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Figure 5.1 Structure of a nucleotide. Each nucleotide in a DNA polymer is made up of three 
components: a deoxyribose, a nitrogenous base (adenine is shown as an example), and a phosphate 
group. The 1′ carbon of the deoxyribose is attached to the nitrogen of a nitrogenous base. A phos-
phate group is attached to the 5′ carbon of the deoxyribose.

N

N

N

N
H

NH 2

5
6 7

9

8

3
4

1

2

HN

H 2N N

N

N
H

O

7

9

8
5

6

3
4

1

2

N

O N
H

NH 2

5
4

1 6

3

2

HN
CH 3

O N
H

O

5
4

1 6

3

2

(a) (b) (c) (d)

Figure 5.2 Chemical structures of nitrogenous bases: (a) adenine, (b) guanine, (c) cytosine, and 
(d) thymine.

3′

5′

O CH2
BaseO

O

P 

O 

HO

3′

5′

OCH2
BaseO

O

P

O

HO

OH 

3′

5′

OCH2
BaseO 

O 

P 

O 

HO 

Figure 5.3 DNA polynucleotide chain. Individual nucleotides are linked by phosphodiester bonds 
between their 5′ and 3′ carbons.



5.1 Basic Principles of DNA Extraction

113

Table 5.1 Three Basic DNA Extraction Methods

Method
Forensic 

Application Purity
DNA 

Strand
DNA 
Size Throughput Note

Solvent-
based

RFLP- and 
PCR-based 
assay

High Double 
stranded

Large Time-consuming; 
difficult to 
adapt for 
automation

Uses toxic 
solvent; multiple 
transfer steps 
between tubes

Boiling PCR-based 
assay

Low Single 
stranded

Small ~30 min per 
sample

No transfer 
required

Silica-
based

RFLP- and 
PCR-based 
assay

High Double 
stranded

Large ~1 h per sample; 
amenable to 
automation

Minimum 
transfer 
required

Figure 5.5 Tissue disruption using a pressure-generating instrument also known as a barocycler. 
During the process, a barocycler is utilized to apply alternating cycles of high and low pressures onto 
specimens placed in single-use processing containers. The technique is known as pressure-cycling 
technology (PCT). (© Richard C. Li.)

Figure 5.4 An automated mechanical disruption device for efficient disruption of tissues. It can 
be used for high-throughput applications involving sample preparation for the isolation of nucleic 
acids. (© Richard C. Li.)
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are embedded in a calcified matrix that is responsible for the rigid structure of bone and teeth. In 
order to achieve a high yield of DNA extraction, it is necessary to remove the calcified matrix. A 
decalcification process removes calcium ions from the matrix, thus making the specimen suitable 
for DNA extraction. The most commonly used decalcifying agents for DNA extraction purposes 
are chelating agents such as ethylenediaminetetraacetic acid (EDTA), which sequesters the calcium 
ions. Decalcification is a lengthy procedure. Bone or teeth powder is usually treated with the decalci-
fying agent overnight or for a longer period of time, depending on the size and source of the sample.

5.1.2 Lysis of Cellular and Organelle Membranes
During or after tissue disruption, membranes—including those of cells, nuclei, and mitochondria—
are lysed in order to release DNAs, including nuclear and mitochondrial DNA. The lysis can 
be carried out using salts and chaotropic agents (Section 5.2.3) such as guanidinium salts and 
detergents such as sarkosyl and sodium dodecyl sulfate (SDS). These substances can destroy 
membranes, denature proteins, and dissociate proteins such as histones from DNA. The lysis pro-
cedure is usually carried out in a buffer, such as Tris, in order to maintain a pH where endog-
enous deoxyribonucleases (DNases) remain inactive. DNases are a type of nuclease that catalyzes 
the cleavage of phosphodiester bonds of DNA. Endogenous DNases are located in cytoplasmic 
lysosomes and play a role in degrading the DNA of invading viruses. When cells are lysed, the 
DNases that are also released can degrade the extracted DNA. Chelating agents such as EDTA or 
Chelex® (Section 5.2.2) can therefore be used to chelate the divalent cations that are the cofactors of 
DNases, in order to inhibit DNase activities. Furthermore, reducing agents such as mercaptoetha-
nol or dithiothreitol (DTT) can be used to inhibit the oxidization processes that can damage DNA.

5.1.3 Removal of Proteins and Cytoplasmic Constituents
After lysis, cytoplasmic constituents, such as proteins and liquids that interfere with DNA 
extraction, are removed. Proteins and lipids are usually removed by one or more rounds of 
extraction with organic solvents such as phenol–chloroform mixtures (Section 5.2.1). Another 
strategy to remove cytoplasmic constituents is to utilize the reversible binding of DNA to a solid 
material such as silica, which selectively binds DNA in chaotropic salt solutions. The proteins 
and cytoplasmic constituents can then be removed through washing steps.

Figure 5.6 Tissue disruption using cryogenic grinding. A cryogenic mill (left), also known as freezer 
mill, can be used for the pulverization of hard tissue such as bone samples into fine powder prior to 
DNA extraction. During a grinding cycle, an impactor (right) moves back and forth, under a magnetic 
field, inside a grinding vial, grinding the sample to a fine powder. The grinding process is carried out 
at low temperatures (approximately −196°C), using liquid nitrogen to protect temperature-sensitive 
analytes such as DNA. (© Richard C. Li.)
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5.1.4 Storage of DNA Solutions
Purified high-molecular-weight DNA is usually stored in TE buffer (10 mM Tris-HCl, 1 mM EDTA, 
pH 8.0). EDTA is usually included in storage solutions to chelate divalent cations and thereby inhibit 
DNases. Such a DNA solution may be stored at 4°C or −20°C. For long-term storage, −80°C is 
recommended. Frequent freezing or thawing cycles should be avoided because temperature fluctua-
tions may cause breaks of single- and double-stranded DNA. Additionally, DNA containing impu-
rities such as extracts generated via the Chelex method are much less stable. The presence of heavy 
metals, such as cadmium and cobalt, can cause breakage of phosphodiester bonds in the molecules. 
Additionally, unsuccessful removal of exogenous or intracellular free radicals, such as a hydroxyl 
radical (HO·), which have unpaired valence electrons, can cause DNA damage such as strand breaks. 
Furthermore, contamination by DNases may lead to subsequent degradation of DNA.

5.1.5 Contamination
Contamination is usually caused by the introduction of exogenous DNA to an evidence sample. 
It can occur between samples, between an individual and a sample, between other organisms 
and a sample, or between amplified DNA and a sample. Certain procedures can be utilized to 
prevent the occurrence of contamination. For example, evidence and reference samples should 
be processed separately in different rooms to avoid sample-to-sample contamination. In situ-
ations where space is limited, the evidence sample should be processed before the reference 
sample. Additionally, evidence samples should be processed and extracted for isolating DNA in 
separate areas (or at different times) from DNA amplification areas.

Solutions and test tubes used for extraction should be DNA-free, and aerosol-resistant pipet 
tips should be used during the extraction process. Additionally, the levels of contamination 
should be monitored by using extraction reagent blanks (having reagents but no samples), which 
monitor contamination from the extraction.

5.2 Methods of DNA Extraction
5.2.1 Extraction with Phenol–Chloroform
This method is also called organic extraction. Major steps include the following:

5.2.1.1 Cell Lysis and Protein Digestion
These steps can be achieved by digestion with proteolytic enzymes such as proteinase K before 
extraction with organic solvents.

5.2.1.2 Extraction with Organic Solvents
The removal of proteins is carried out by extracting aqueous solutions containing DNA with a 
mixture of phenol:chloroform:isoamyl alcohol (25:24:1). Phenol is used to extract the proteins 
from the aqueous solution. Although phenol has a slightly higher density than water, it is some-
times difficult to separate it from the aqueous phase. Therefore, chloroform is utilized as it has 
a higher density than phenol. As a result, the phenol–chloroform mixture forms the organic 
phase at the bottom of the tube and is easily separated from the aqueous phase. Isoamyl alcohol 
is often added to the phenol–chloroform mixture to reduce foaming. During partition, DNA is 
solubilized in the aqueous phase, while lipids are solubilized in the organic phase. Proteins are 
located at the interface between the two phases (Figure 5.7).

5.2.1.3 Concentrating DNA
Two common methods for concentrating DNA are ethanol precipitation and ultrafiltration. In the 
first method, the DNA is precipitated from the aqueous solution with ethanol and salts. Ethanol 
depletes the hydration shell of DNA, thus exposing its negatively charged phosphate groups. The 
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precipitation can only occur if sufficient quantities of cations are present in the solution. The 
most commonly used cations, such as ammonium, lithium, and sodium, neutralize the charges 
on the phosphate residues of DNA, forming a precipitate. Ultrafiltration is an alternative to etha-
nol precipitation for concentrating DNA solutions. The Microcon® and Amicon® are centrifugal 
ultrafiltration devices that can concentrate DNA samples (Figure 5.8). A proper Microcon® unit 
can be selected with a nucleotide cutoff equal to or smaller than the molecular weight of the DNA 
fragment of interest. Usually, the cutoff size is 100 kDa for forensic DNA samples.

Phenol–chloroform extraction yields large, double-stranded DNA and can be used for 
either restriction fragment length polymorphism (RFLP)-based or polymerase chain reaction 

DNA

Protein

Lipid

Aqueous phase

Organic solvent phase

Figure 5.7 DNA extraction using organic solvent. The DNA is contained in the aqueous phase, 
while cellular materials such as lipids are contained in the organic-solvent phase. Proteins remain in 
the barrier between the two phases. (© Richard C. Li.)

Sample reservoir

Filter

Filtrate

Concentrated DNA

DNA sample
DNA trapped by filter

Inverted cartridge

Figure 5.8 Concentrating DNA solutions using filtration devices. DNA samples are loaded into the 
reservoir. The liquid is filtered by centrifugation and the DNA becomes trapped in the membrane. 
The cartridge is then inverted to recover the trapped DNA by centrifugation. (© Richard C. Li.)
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(PCR)-based analysis. However, the organic extraction method is time-consuming, involves the 
use of hazardous reagents, and requires the transfer of samples among tubes.

5.2.2 Extraction by Boiling Lysis and Chelation
This technique, also called the Chelex® extraction method, was introduced in the early 1990s to 
forensic DNA laboratories. It usually includes the following steps:

5.2.2.1 Washing
This step removes contaminants and inhibitors that may interfere with DNA amplification. 
For example, heme compounds found in blood samples should be removed from blood sam-
ples because it inhibits DNA amplification.

5.2.2.2 Boiling
Cells are suspended in a solution and incubated at 56°C, where DNases are not active, for 20 min. 
This preboiling step softens cell membranes and separates clumps of cells from each other. The 
cells are then lysed by heating to boiling temperature in order to break open the membranes 
and to release the DNA. Additionally, the lysis of cells releases all of their cellular constituents, 
including DNases. The DNase degradation of the extracted DNA can be blocked by applying 
a chelating resin (Chelex® 100) during the extraction process. Chelex® 100 is an ion-exchange 
resin composed of styrene divinylbenzene copolymers. The paired iminodiacetate ion groups in 
Chelex® 100 act as chelators by binding to divalent metal ions such as magnesium. Magnesium is 
a cofactor of endogenous DNases. Thus, sequestering magnesium in the solution using Chelex® 
100 protects DNA from degradation by DNases (Figure 5.9).

5.2.2.3 Centrifugation
Brief centrifugation is performed to pull the Chelex® 100 resin and cellular debris to the bot-
tom of the tube. The supernatant is used for DNA analysis. Carrying the Chelex® 100 resin over 
into the DNA amplification solutions should be avoided because the resin chelates magnesium, 
which is a necessary cofactor for DNA polymerases used for amplification.
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Figure 5.9 Utilizing Chelex® for preparing DNA samples. (a) Cations such as Mg2+ are required 
for the activity of endogenous DNase, which degrades DNA. (b) Chelex® prevents DNA degradation 
from endogenous DNase by sequestering the Mg2+. (© Richard C. Li.)
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This method is simple and rapid and uses only a single tube for extraction, thus reducing the 
risks of contamination and sample mix-ups. However, the heating step of this method disrupts 
and denatures proteins and also affects the chromosomal DNA. The resulting DNA extracted 
from the solution is fragmented single-stranded DNA. Thus, the DNA extracted is not suitable 
for RFLP analysis because RFLP requires double-stranded DNA samples. The DNA obtained by 
lysis and chelation can only be used for PCR-based DNA analysis.

5.2.3 Silica-Based Extraction
The method of adsorbing DNA molecules to solid silica surfaces is used for extraction (Figures 5.10 
and 5.11). The method is based on the phenomenon that DNA is reversibly adsorbed to silica—
silicon dioxide (SiO2)—in the presence of high concentrations of chaotropic salts. Chaotropic 
salts can disrupt hydrogen bonding, affecting the three-dimensional structures of macromol-
ecules. These salts are used to denature proteins. Additionally, chaotropic salts can facilitate the 
adsorption of DNA to silica.

In aqueous solutions, the hydration shells of nucleic acids shield the negative charges of 
phosphates at the phosphodiester backbone of nucleic acids. As a result, nucleic acids are usu-
ally hydrophilic in aqueous solutions. In the presence of chaotropic salts, nucleic acids become 
hydrophobic. The dehydrating effect caused by chaotropic salts allows the phosphate residues to 
become available for adsorption to the silica surface. Common chaotropic salts utilized for DNA 
extraction include guanidinium salts such as guanidinium thiocyanate (GuSCN) and guani-
dinium hydrochloride (GuHCl). GuSCN is a more potent chaotropic salt and also facilitates cell 
lysis and DNA adsorption. This technique usually includes the following steps:

5.2.3.1 Cell Lysis and Protein Digestion
This is carried out by proteinase K digestion. The cell membranes are broken open, and DNA is 
released.

5.2.3.2 DNA Adsorption onto Silica
This step utilizes silica as the stationary phase in a membrane configuration to which the DNA 
in the cell lysate binds. Adsorption of the DNA to the silica occurs in the presence of high 
concentrations of chaotropic agents (some protocols adjust pH conditions to enhance adsorp-
tion). Under these conditions, cellular materials and other contaminants that can inhibit DNA 
amplification reactions are not retained on the silica membrane. The adsorbed DNA is largely 
double stranded.

Figure 5.10 A silica-membrane spin column. (© Richard C. Li.)
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5.2.3.3 Washing
This step removes chaotropic agents and other contaminants. An ethanol-based wash solution is 
used. This wash solution does not remove DNA from the silica. The chaotropic agents and con-
taminants that are present in the solution can be removed using the ethanol-based wash solution.

5.2.3.4 Elution of DNA
The adsorbed DNA can be eluted by rehydration with aqueous low-salt solutions. The eluted 
DNA is double stranded and can be used for a wide variety of applications.

Silica-based extraction methods yield high-quality DNA. Silica membrane devices can also be 
adapted for automation; for example, this can be done by using 96-well silica membrane plates and 
a variety of robotic platforms. Another type of device utilizes silica-coated paramagnetic particles 
that adsorb DNA in the solution (Figure 5.11b). A magnet is used for particle capture instead of 
centrifugation or vacuum filtration. The magnetic particles can be resuspended during the wash 
steps, and the solution containing contaminants and cellular materials is then discarded. DNA 
is eluted after washing. This device can also be adapted to automated, high-throughput methods.

Over the years, high-throughput silica-based procedures have been developed to process 
large numbers of samples in parallel. Some of these methods are adapted for automated DNA 
extraction platforms (Figures 5.12 and 5.13).

Cell lysis

SiO2 SiO2 SiO2

Binding

Binding

Wash

Wash

Elute

Elute
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Figure 5.11 Silica-based DNA extractions. (a) Cells are lysed in the presence of proteinase. The DNA 
then binds to the silica matrix. A washing step removes unbound cellular materials and salts from the 
matrix. The purified DNA is then eluted for use in downstream applications. (b) Using silica-coated 
paramagnetic particles for DNA extraction. The particle is added into a lysate, and then DNA binds 
to the silica surface of the particle. The particle is then captured by a magnetic field. Afterwards, the 
supernatant is removed, and cellular materials are washed away. DNA elution follows. See Section 5.2.3. 
(© Richard C. Li.)
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Figure 5.12 Automated bench-top DNA purification systems that enable the isolation of genomic 
DNA from a wide variety of forensic samples. A low-throughput sample-preparation system that 
can process up to 12 samples (left) and a low-to-medium throughput sample-preparation system 
(right). (© Richard C. Li.)

Figure 5.13 Integrated platforms enabling automated DNA sample preparation and liquid handling 
for subsequent assay setup. These systems utilize silica-coated bead chemistries and can achieve 
moderate to high throughput of processing (1–96 samples) with bar coding for sample tracking. A 
Hamilton (top) and a Qiagen system (bottom). (© Richard C. Li.)
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5.2.4 Differential Extraction
This method is very useful for the extraction of DNA from biological evidence derived from sex-
ual assault cases, such as vaginal swabs and bodily fluid stains. These types of evidence often con-
tain mixtures of spermatozoa from a male contributor and nonsperm cells such as epithelial cells 
from a female victim. Mixtures of individual DNA profiles can complicate data interpretation.

This method selectively lyses the nonsperm and spermatozoa in separate steps based on the 
differences in cell-membrane properties of spermatozoa and other types of cells. Thus, the DNA 
from spermatozoa and nonsperm cell fractions can be sequentially isolated.

First, the differential extraction procedure involves preferentially lysing the nonsperm cells 
with proteolytic degradation using proteinase. Sperm plasma membrane contains proteins 
cross-linked by disulfide bonds. The membrane exhibits a much higher mechanical stability 
than nonsperm cells and is thus resistant to proteolytic degradation. The nonsperm DNA is 
released into the supernatant and the liquid containing it (the nonsperm fraction) is extracted, 
yielding a fraction that predominantly contains DNA from nonsperm cells.

To lyse the sperm cells, it is necessary to cleave the disulfide bonds in addition to proteo-
lytic digestion. The application of DTT, a reducing agent, is an approach that can be used for 
cleavage. In the presence of DTT and proteinase K, the sperm plasma membrane is then lysed 
(Figure 5.14). Subsequently, DNA from the sperm cells can be extracted (Figure 5.15).
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Figure 5.14 DTT reaction. The breaking of disulfide bonds in cystine residues is carried out by 
adding a reducing agent such as DTT.
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Figure 5.15 Differential extraction process used to separate sperm cells from nonsperm cells. 
Nonsperm cells are lysed in the presence of SDS and proteinase K (PK); sperm cells are resistant 
to such conditions. The nonsperm cell DNA is extracted. The sperm cells are then lysed separately 
in the presence of SDS and proteinase K plus DTT to extract the sperm DNA. (© Richard C. Li.)
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This process isolates sperm and nonsperm cell DNA separately for obtaining DNA profiles 
from male and female contributors, respectively. However, the non-sperm-cell DNA and sperm-
cell DNA may not be completely separated from one another; this can happen, for example, if 
the sperm cells have already lysed due to poor sample conditions. Some sperm DNA may be 
present in the non-sperm-cell fraction. Additionally, if a mixture has an abundance of non-
sperm cells and fewer sperm cells, non-sperm-cell DNA may be detected in the sperm fraction. 
Thus, new methods that can overcome these problems are highly desired.

5.3 Essential Features of RNA
Like DNA, ribonucleic acid (RNA) is a linear molecule containing four types of nucleotides 
linked by phosphodiester bonds (Figures 5.16 and 5.17). However, certain properties of RNA dif-
fer from those of DNA. Unlike DNA containing deoxyribose (see Figure 5.18), the sugar residue 
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Figure 5.16 The structure of ribonucleotide. Each ribonucleotide in a RNA polymer consists of 
three components: a ribose, a nitrogenous base (uracil is shown as an example), and a phosphate 
group. The 1′ carbon of the ribose is attached to the nitrogen of the nitrogenous base. A phosphate 
group is attached to the 5′ carbon of the ribose.
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of RNA is a ribose, which has a hydroxyl (OH) group at the 2′ carbon position. Therefore, RNA 
has a lower pKa, which means that it is more acidic than DNA. RNA contains uracil (U) in the 
place of thymine in DNA (Figure 5.19). RNA is typically found in cells as a single-stranded mol-
ecule, while DNA is double stranded. Polyribonucleotides can form complementary helices with 
DNA strands by base pairing (with the exception of uracil pairs with adenine) (see Figure 5.20).

Total RNA contains all the RNA of the cells, including RNAs involved in protein synthesis 
and posttranscriptional modification, as well as regulatory RNAs. The RNA that carries codes 
from a DNA template is called messenger RNA (mRNA) and usually contains a cap and polyad-
enine tail at the 5′ and 3′ ends of the molecule, respectively (Figure 5.21).

The stability of RNA is an issue for mRNA-based forensic analysis. Single-stranded RNA is 
chemically less stable than DNA. The 2′ OH group of RNA can react with its phosphodiester 
backbone, potentially causing the nonenzymatic hydrolysis of an RNA molecule. Several factors, 
such as moisture, UV light, high temperature, and extreme pH, can facilitate the nonenzymatic 
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Figure 5.18 Comparison of (a) ribose and (b) deoxyribose. The hydroxyl group attached to the 2′ 
carbon of ribose is replaced by a hydrogen group in deoxyribose.
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Figure 5.21 Structure of mRNA. Eukaryotic mRNA is modified at the 5′ end (cap) and 3′ end 
(polyadenine tail) needed for protein synthesis. Start and stop codons are required for the initiation 
and termination of protein synthesis. (© Richard C. Li.)
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hydrolysis of RNA phosphodiesters, which leads to the degradation of RNA. Moreover, endog-
enous ribonucleases (RNases), present within cells, represent the major factor causing RNA deg-
radation. Environmental microorganisms are also a common source of RNase contamination. 
RNases are very stable and usually do not require cofactors to carry out enzymatic reactions. 
Small amounts of RNases are sufficient to degrade RNA. RNA can be protected by adding RNase 
inhibitors such as diethylpyrocarbonate. Additionally, using RNase-free laboratory supplies and 
reagents and wearing disposable gloves while handling samples and reagents can reduce the 
risks of RNase contamination.

5.4 Methods of RNA Extraction
5.4.1 RNA–DNA Coextraction
For most forensic applications, total RNA is usually isolated. The procedure for isolating total 
RNA is simpler than that for mRNA. The total RNA isolated usually contains a sufficient amount 
of mRNA for subsequent reverse transcriptase PCR (RT-PCR; see Chapter 7). However, if the 
quantity of a target mRNA is very low, the procedures specifically for isolating mRNA should be 
used. There are a variety of protocols for isolating total RNA. However, RNA–DNA coextraction 
methods allow for the simultaneous extraction of high-quality DNA and RNA for forensic DNA 
analysis and bodily-fluid identification (Chapter 11), respectively, without the consumption of 
additional samples when extracted separately.

Biological samples are first lysed in lysis buffer. The lysis buffer usually contains chaotropic 
salts that can facilitate the lysis of cells and denature proteins, thus inactivating endogenous 
RNases to protect RNA. The lysate is then passed through a silica membrane column. A high-
salt environment in the lysate allows selective binding of silica to genomic DNA over RNA. The 
column is washed, and purified DNA is then eluted.

The extraction of RNA is achieved by utilizing a high concentration of chaotropic salts that 
are already present in the lysate, along with ethanol, in order to decrease the hydrophilic prop-
erty of RNA and increase its affinity for silica. After ethanol is added to the flow-through that 
passed the first column, the sample is then applied to a second silica column, where total RNA 
molecules, longer than 200 nucleotides, bind to the silica membrane. RNA including mRNA is 
then eluted (Figure 5.22). This method does not isolate small RNAs such as miRNA, rRNA, and 
tRNA, which comprise 15%–20% of total RNA.

5.4.2 miRNA Extraction
miRNAs (Chapter 4) are low-molecular-weight RNAs ranging between 15 and 30 nucleotides in 
length. Conventional methods routinely used for extracting total RNA do not effectively recover 
small RNAs; thus, they are not suitable for isolating miRNA. One approach to extracting small 
RNA molecules including miRNA involves two steps: organic-solvent extraction to isolate total 
RNA and solid-phase extraction to enrich small RNA.

To begin the process, tissues are disrupted and cells are lysed. The lysis reagents also inacti-
vate RNases to protect RNA. The lysate is then extracted with an organic solvent, such as phenol 
and chloroform, with a high concentration of chaotropic salts such as GuSCN. The partitioning 
of DNA and RNA between the organic phase and the aqueous phase is determined by the pH 
during the organic extraction. At an acidic pH, DNA partitions to the organic phase. The pKa of 
RNA is usually lower than DNA; thus, RNA remains hydrophilic and is retained in the aqueous 
phase under this condition. This step removes most of the DNA, proteins, and other cellular 
components from the lysate into the organic phase.

The second step, silica-based extraction, further purifies and enriches small RNAs. It is 
achieved by utilizing the high concentration of chaotropic salt that is already present in the 
lysate, along with ethanol. The size-fractioning of RNAs is achieved using different ethanol 
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concentrations. At a low ethanol concentration, the solvent-extracted lysate is passed through 
a silica membrane filter. Large RNAs are retained on the silica membrane, while small RNAs 
are not and are collected in the filtrate. The filtrate is passed through a second silica membrane 
filter. At a high ethanol concentration, the small RNAs are retained on the silica membrane. The 
small RNAs are then eluted in a low ionic strength solution (Figure 5.23). RNA less than 200 
nucleotides, including miRNA, can be obtained.

After RNA is extracted, the small amounts of RNA can be quantified using a quantitative 
RT-PCR (Chapter 7) or fluorescent intercalating dye assay (Chapter 6). Purified RNA can be 
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Figure  5.22 RNA and DNA coextraction using a silica-based method. See Section  5.4.1. 
(© Richard C. Li.)



Forensic Biology, Second Edition

126

stored at −80°C in RNase-free water or Tris-EDTA buffer (pH 7). Single-use aliquots are pre-
ferred when possible to avoid multiple freeze–thaw cycles.

The integrity of extracted RNA is a great concern for RNA-based forensic analysis. RNA 
quality is traditionally assessed using the 28S:18S rRNA ratio. There are some conditions 
where this method has been shown to be inconsistent; that is, in which the 28S:18S rRNA ratio 
does not reflect the true level of RNA degradation. Recently, the RNA integrity number (RIN) 
has provided an effective method for determining RNA quality. RIN is a software algorithm 
that takes the electrophoretic RNA measurements into account in order to assign integrity 
values to RNA samples. RIN ranges from 1 to 10, with 10 being the most intact. Thus, the 
RIN method facilitates the assessment of the integrity of RNA samples. As reflected by RIN, 
RNA degradation has a negative influence on the reproducibility of the results of RNA-based 
forensic analysis.
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Figure  5.23 Schematic illustration of an miRNA extraction method. See Section  5.4.2. 
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6
DNA Quantitation

Determining the amount of DNA in a sample is essential for polymerase chain reaction 
(PCR)-based DNA testing (Chapter 7). Because PCR-based DNA testing is very sensitive, a nar-
row concentration range is required for amplification to be successful. If too much DNA tem-
plate is used in PCR, the resulting artifacts may interfere with data analysis and interpretation. 
On the other hand, very low amounts of DNA template may result in a partial DNA profile or 
failure to attain a profile. Samples with poor purity may contain PCR inhibitors that lead to a 
failure of DNA amplification. Thus, a test that can measure the quality and quantity of the DNA 
template of a sample is desirable.

Additionally, forensic samples containing DNA are often mixtures that may include nonhu-
man DNA. For instance, microbial DNA may be present. Thus, it is necessary to use human-
specific DNA quantitation methods to selectively determine the amount of human DNA present. 
In the United States, quality-assurance guidelines require the use of a quantitation method that 
estimates the amount of human nuclear DNA in crime-scene evidence samples.

In this chapter, the slot blot, intercalating dye, and quantitative PCR methods are introduced. 
The quantitative PCR method is the most sensitive of the three methods. It is the only method 
that can detect PCR inhibitors. Both the slot blot and the quantitative PCR methods can detect 
human and nonhuman primate DNA. Current technology cannot distinguish between human 
and nonhuman primate DNA.

6.1 Slot Blot Assay
Historically, the slot blot assay was used to detect human genomic DNA in a sample. 
Methodically, the slot blot assay works based on the following principles. Prior to the quan-
titation, an alkaline solution is added to the genomic DNA sample, which denatures DNA. 
Generating single-stranded DNA is necessary for DNA to be cross-linked onto a nitrocellulose 
membrane. The DNA sample is then spotted, using a slot blot device, onto a nitrocellulose mem-
brane (Figure 6.1). The single-stranded DNA is then immobilized onto a nylon membrane. The 
targeted sequence is revealed by hybridization with a labeled 40-nucleotide probe complemen-
tary to a primate-specific α-satellite DNA sequence at the D17Z1 locus (Figure 6.2). In humans, 
the α-satellite DNA sequences are highly repetitive sequences located near the centromeres of 
chromosomes. These sequences are usually distinct for each chromosome.

Three detecting schemes of the slot blot assay have been developed. Initially, the D17Z1 probe 
was labeled with radioisotopes that could be visualized by exposing the slot blot membrane to 
x-ray film. The hazardous radioisotope detection method was then replaced by alkaline phos-
phatase-labeled and biotinylated probes. The alkaline phosphatase-labeled probe can be coupled 
with chemiluminescent detection (Lumi-Phos Plus kit, Lumigen, Inc.). The biotinylated probe 
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(QuantiBlot Human DNA Quantitation Kit, Applied Biosystems) can be coupled with either 
colorimetric or chemiluminescent detection.

In colorimetric detection, the biotin moiety of the probe is bound to streptavidin. The strep-
tavidin is conjugated with horseradish peroxidase, which catalyzes the oxidation reaction of tet-
ramethylbenzidine (TMB), a substrate, forming a blue precipitate. With the chemiluminescent 
detection method, the horseradish peroxidase catalyzes the oxidation reaction of a substrate 
such as luminol, emitting photons that can be detected by exposure to x-ray film. The sensitiv-
ity of chemiluminescent detection is slightly higher than that of the colorimetric detection. The 
detection mechanisms will be discussed in Chapter 9.

The detected signal intensity is proportional to the concentration of the DNA sample in ques-
tion. Quantitative measurements can be made by comparing an unknown sample to a set of 
standards with known DNA concentrations (Figure 6.3).

The assay typically quantifies DNA over the range of 150 pg–10 ng. However, the quantitation 
results are manually read, and conclusions are based on subjective judgments. Additionally, the 
D17Z1 sequences of humans and other primates share homology. The probe cannot distinguish 
between human and other primate genomic DNA. This is not a great concern because cases involv-
ing nonhuman primates are rare. Nevertheless, the probe does not cross-react with all other spe-
cies. This assay has been replaced by recently developed quantitative PCR assays (see Section 6.3).

6.2 Fluorescent Intercalating Dye Assay
Small quantities of DNA can also be quantified by using a fluorescent intercalating dye method. 
Intercalating dyes, usually planar molecules, can slide themselves in between base pairs of 
DNA without breaking the DNA double helix. The Quant-iTTM PicoGreen® dsDNA reagent 
(Invitrogen) is a fluorescent intercalating dye that stains double-stranded DNA (dsDNA) for 
quantitation in a sample (Figure  6.4a). The detection limit of this method is approximately 
250 pg. Intercalating dyes, not specific to human DNA, bind to all DNA molecules. Therefore, 
fluorescent intercalating dye assay can be utilized for the quantitation of known reference sam-
ples. For instance, DNA database samples from known sources can be quantified using this 
method. The assay has also been adapted for automation and is, thus, a high-throughput method.

DNA samples are simply added to a solution containing the fluorescent intercalating dye. The 
fluorescence, proportional to the quantities of DNA (Figure 6.4b), is measured using a standard 
spectrofluorometer with excitation and emission wavelengths of the light source. A standard 

Figure 6.1 A slot blot device. (© Richard C. Li.)
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Figure 6.2 Slot blot assay. Questioned DNA is immobilized onto a solid-phase membrane then 
hybridized with a biotinylated D17Z1 probe. The detection of the hybridization is carried out by 
(a) streptavidin (SA) and horseradish peroxidase (HRP) conjugate, and a colorimetric reaction is 
catalyzed by HRP using tetramethylbenzidine (TMB) as a substrate; (b) SA and HRP conjugate, and 
a chemiluminescent reaction is catalyzed by HRP using Luminol as a substrate; (c) immobilized 
DNA is hybridized with an alkaline phosphatase (AP)-labeled D17Z1 probe. The detection of the 
hybridization is carried out by a chemiluminescent reaction catalyzed by AP using Lumigen® PPD 
as a substrate. (© Richard C. Li.)
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Figure 6.3 Human DNA quantitation using the slot blot assay. Standards with known amounts of 
human DNA are applied, and unknown samples and a set of standards are compared. The quantities 
in the unknown samples are estimated by visual comparison to the standards. (© Richard C. Li.)
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Figure 6.4 DNA quantitation using intercalating dye. (a) Fluorescent dye intercalates into DNA. 
The fluorescence can be measured upon applying an excitation light source. (b) A standard curve 
can be constructed using known amounts of DNA standards. The amount of questioned DNA can 
be determined by comparing the standard curve. (© Richard C. Li.)



6.3 Quantitative PCR Assay

137

curve is first created using samples containing known amounts of DNA. The assay is then per-
formed for the unknown samples and the quantities of DNA in the samples are determined by 
comparing the results to the standard curve.

6.3 Quantitative PCR Assay
Based on the principle of PCR amplification (Chapter 7), the amount of PCR product amplified 
correlates with the initial concentration of DNA templates. Thus, the DNA concentration of a sam-
ple can be determined. There are two types of quantitative PCR methods. End-point PCR methods 
measure the quantity of amplified product at the end of PCR. Usually, the fluorescence is emit-
ted by the dyes that intercalate into the double-stranded DNA. The quantity of amplified DNA is 
measured from the amount of fluorescence emitted from dyes such as SYBR (Figures 6.5 and 9.1b).

Real-time PCR methods can quantify the amplified DNA during the exponential phase of PCR 
(Chapter 7). The quantitation result is not affected to a significant extent by slight variations in PCR 
conditions. Thus, the precision of the quantitation of target sequences is improved with this method.

6.3.1 Real-Time Quantitative PCR
Real-time quantitative PCR (qPCR) was developed in the early 1990s, and it analyzes the ampli-
fication of a target sequence at each cycle of PCR. A fluorescent reporter is used to monitor 
the accumulation of amplified products during PCR. The fluorescence signals of the reporter 
molecule increase as amplified products accumulate with each cycle of PCR. qPCR is commonly 
used because of the following advantages:

  Better objectivity than the QuantiBlot method

  Increased sensitivity with a large dynamic range (30 pg–100 ng)

  More accurate measurements of small quantities of DNA in samples

  Fewer laboratory manipulations; amenable to automation

  Ability to detect PCR inhibitors (Section 6.3.1.1)

Primer

Template

Extension SYBR

Pol

Excitation

hv

Completion of
extension

Figure 6.5 End-point PCR using SYBR Green detection. During the extension phase of PCR, in 
which DNA synthesis occurs, the dye binds to the double-stranded amplicons. Upon excitation, the 
emission intensity of the dye can be measured. Pol represents Taq polymerase. (© Richard C. Li.)
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The technique is amenable to multiplexing to detect more than one type of DNA target sequence 
in a single reaction. Commercial qPCR kits for human DNA and Y-chromosome DNA quantita-
tion are available. Additionally, the qPCR method for mtDNA quantitation is possible. qPCR uses 
commercially available fluorescence-detecting thermocyclers to amplify specific DNA sequences 
and measure their concentrations simultaneously. The fluorescent reporter can be a nonspecific 
intercalating double-stranded DNA-binding dye or a sequence-specific fluorescently labeled oligo-
nucleotide probe (Chapter 9). The target sequences are amplified and detected by the same instru-
ment, and the reporter fluorescence is monitored externally. Thus the reaction tubes do not need 
to be opened. This minimizes aerosol contamination and reduces the risk of false-positive results. 
A widely used qPCR probe technique is the TaqMan method (Applied Biosystems).

6.3.1.1 TaqMan Method
This method utilizes the 5′ exonuclease activity of Taq polymerase to cleave the probe during 
PCR (also known as the 5′ exonuclease assay). The probe is designed to anneal to the target 
sequence between the upstream and downstream primers and is added to the PCR mixture 
together with primers (Figure 6.6). The probe Tm (melting temperature; see Chapter 7) should 
be higher than the amplification primer Tm. A minor groove binder (MGB), such as dihydrocy-
clopyrroloindole tripeptide, is often linked at the 3′ end of the probe (Figure 6.6). A conjugated 
MGB binds to the minor groove of a B-form DNA helix (Figure 6.7), which is stabilized by van 

R
Q

MGB
3′5′

Figure 6.6 TaqMan probe. Each probe is labeled with a reporter dye (R) on the 5′ end and a 
fluorescence quencher (Q) on the 3′ end. MGB represents a minor groove binder. (© Richard C. Li.)
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Figure 6.7 DNA double helix. The double-helical structure of B-DNA, the most common form of 
DNA, is shown. With a helical diameter of 2 nm, each turn of the helix takes 3.4 nm, which cor-
responds to 10 base pairs per turn. The major and minor grooves are shown. (© Richard C. Li.)
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der Waals forces. As a result, conjugating an MGB into a probe increases the Tm values, allowing 
for the use of shorter probes. As a result, having the probe Tm higher than that of the primers 
ensures that the probe is fully hybridized during primer extension. The oligonucleotide probe is 
labeled with both a reporter fluorescent dye, usually 6-carboxyfluorescein (6-FAM) or tetrachlo-
rofluorescein (TET) at the 5′ end; and a nonfluorescent quencher moiety, such as tetramethyl-
rhodamine (TAMRA), usually at the 3′ end or any thymine position. While the probe is intact, 
the quencher greatly reduces the fluorescence emitted by the reporter via fluorescent resonance 
energy transfers (FRET). FRET is a distance-dependent interaction between two molecules in 
which the excitation energy is transferred from a photon donor molecule (reporter) to an accep-
tor molecule (quencher) without emission of a photon. During the extension phase of the PCR 
cycle, the 5′ exonuclease activity of Taq polymerase cleaves the reporter dye from the probe. 
Because the reporter dye is no longer in close proximity to the quencher, the FRET is disrupted 
and the probe begins to fluoresce (Figure 6.8). The intensity of fluorescence can be measured 
(Chapter 9) and is proportional to the amount of target DNA synthesized during the PCR.

In this assay, the rate of accumulation of amplified DNA over the entire course of a PCR is 
generated. The greater the initial concentration of target templates in a sample, the fewer cycles 
required to reach a particular quantity of amplified product. The initial concentration of target 
templates can be expressed using the cycle threshold (CT). CT is defined as the number of PCR 
cycles required for the fluorescent signal to cross a threshold of amplification where the signal 
exceeds background level or baseline noise. A plot of CT against the log10 of the initial concen-
tration of a set of DNA standards yields a straight line as a standard curve (Figure  6.9). The 
target sequences in an unknown sample can be quantified by comparing to the standard curve. 
Additionally, qPCR has the ability to detect PCR inhibitors (Chapter 7) that interact with DNA or 
with DNA polymerases. The presence of PCR inhibitors in the DNA extracts can be measured by 
monitoring the amplification of the internal positive control (IPC). Most human DNA quantita-
tion kits contain a known amount of exogenous DNA as IPC that can be fortified to the sample 
and amplified. Monitoring the amplification of IPC enables the detection of PCR failure due to 
inhibition when the IPC’s CT value is higher than that of an uninhibited PCR reaction.
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Figure 6.8 Real-time PCR with TaqMan detection. The TaqMan probe is shown. During extension, 
the 5′ nuclease activity of Taq polymerase (Pol) cleaves the probe. Reporter dye is released during 
each cycle of PCR. (© Richard C. Li.)
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7
Amplification by Polymerase 

Chain Reaction

7.1 Denaturation and Renaturation of DNA
The DNA double helix is stabilized by chemical interactions. Base pairing of the two strands 
involves the formation of hydrogen bonds that provide weak electrostatic attractions between 
electronegative atoms. An adenine always pairs with a thymine (two hydrogen bonds), and a 
cytosine pairs with a guanine (three hydrogen bonds) (see Figure 7.1). Base stacking involves 
hydrophobic interactions between adjacent base pairs and provides stability to the double helix.

Double-stranded DNA is maintained by hydrogen bonding between the bases of complemen-
tary pairs. Denaturation occurs when the hydrogen bonds of DNA are disrupted, and the strands 
are separated. A melting curve can be obtained from measuring DNA denaturation by slowly heat-
ing a solution of DNA. As shown in Figure 7.2, an increasing temperature increases the percent-
age of the DNA that is denatured. The temperature at which 50% of DNA strands are denatured 
is defined as the melting temperature (Tm). The value of Tm is affected by the salt concentration of 
the solution, but can also be affected by nucleotide content, high pH, and length of the molecule.

Nucleotide content affects the value of Tm because GC pairs are joined by three hydrogen 
bonds while the AT pairs are joined by only two. Increasing the GC content of a DNA molecule 
increases the Tm. Excessively high pH causes the hydrogen bonds to break and the paired strands 
to separate. Finally, the length of the molecule also affects the Tm simply because a longer mol-
ecule of DNA requires more energy to break more bonds than a shorter molecule.

The single strands in a solution of denatured DNA can, under certain conditions, reanneal into 
double-stranded DNA. The process is called renaturation and two requirements must be met for it 
to occur. First, sufficient amounts of charged molecules, such as salts, must be present in the solu-
tion to neutralize the negative charges of the phosphate groups in DNA. This prevents the comple-
mentary strands from repelling each other. Additionally, the temperature must be high enough to 
disrupt hydrogen bonds that formed randomly between the bases of DNA strands. However, exces-
sively elevated temperatures can disrupt the base pairs between the complementary DNA strands.

7.2 Basic Principles of Polymerase Chain Reaction
The polymerase chain reaction (PCR) allows the exponential amplification of specific sequences 
of DNA to yield sufficient amplified products, also known as amplicons, for various downstream 
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applications. The technique is highly sensitive and can amplify very small quantities of DNA. 
Therefore, it can be utilized for the analysis of samples of limited quantity. PCR-based assays are 
rapid and robust. Thus, PCR forms the basis of many forensic DNA assays such as DNA quan-
titation (Chapter 6), short tandem repeat (STR) profiling (Chapter 20), and mitochondrial DNA 
(mtDNA) sequencing (Chapter 23).

The concept of synthesizing DNA by a cycling process was first proposed in the early 1970s. In 
the mid-1980s, PCR technology was finally developed by Kary Mullis and his coworkers (Cetus 
Corporation) to amplify the β-globin gene for the diagnosis of sickle-cell anemia. In the late 1980s, a 
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thermostable polymerase from Thermus aquaticus was utilized for PCR. This step greatly increased 
efficiency and allowed the process to be automated. The result was a powerful impact on molecular 
biology. In 1993, Mullis was awarded the Nobel Prize for the invention of PCR technology.

In the early 1990s, the technique for the simultaneous amplification and detection of the accu-
mulation of amplicons at each PCR cycle was developed, and the concept of real-time PCR was born. 
This process allows the monitoring of amplicon production at each cycle of the PCR process. The 
fundamental processes were studied by characterizing the amplification kinetics of PCR using a 
graph that plotted the amount of amplicon yield at each cycle versus the cycle number (Figure 7.3).

An S-shaped amplification curve is obtained and divided into an exponential phase, a linear 
phase, and a plateau. During the exponential phase, the amplicon accumulates exponentially. 
It was revealed that the amplicon accumulation during PCR was correlated to the starting copy 
number of DNA template. Thus, the amount of amplicon produced during the exponential 
amplification phase can be used to determine the amount of starting material. This relation-
ship can be further examined using a plot of cycle numbers versus a log scale of the serial dilu-
tion of the starting concentration of DNA template, which results in a linear relationship (see 
Chapter 6). It demonstrates that fewer cycles are needed if larger quantities of starting DNA 
template are present. The slope of this linear curve (Figure 6.9b) is known as the amplification 
efficiency. The exponential phase continues until one or more of the components (Section 7.3) in 
the reaction become limited. At this point, the amplification efficiency decreases, the amplicon 
no longer accumulates exponentially, and PCR enters the linear phase of the curve. At the pla-
teau phase, no more amplicon is accumulated due to the exhaustion of reagents and polymerase.

7.3 Essential PCR Components
A PCR reaction requires thermostable DNA polymerases, primers, and other components, as 
described below (Figure 7.4).

7.3.1 Thermostable DNA Polymerases
A wide variety of DNA polymerases are available. They vary in fidelity, efficiency, and ability 
to synthesize longer DNA fragments. Nonetheless, Taq polymerase is the most commonly used 
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enzyme for routine PCR applications (0.5–5 units per reaction). Currently, AmpliTaq Gold™ 
DNA polymerase (Applied Biosystems) is the most common DNA polymerase for forensic 
applications.

PCR reactions are usually set up at room temperature. Nonspecific annealing between 
primers and template DNA can occur, resulting in the formation of nonspecific amplicons. 
Additionally, annealing between the primers can occur to form primer dimers. Nonspecific 
annealing interferes with PCR amplification by reducing the amplification efficiency of the spe-
cific sequences of interest.

Such interference can be minimized by a hot-start PCR approach. The AmpliTaq Gold™ DNA 
polymerase, a modified enzyme, remains in an inactive form until activated with a pH below 7 
prior to the PCR cycling in which the inhibitory motif is inactivated. The pH of the buffer sys-
tem used in the PCR reaction is temperature sensitive; increasing the temperature decreases the 
pH of the solution. Thus, the activation of the enzyme can actually be carried out by a heating 
step at 95°C prior to the start of the cycling. During the heating process, the DNA strands also 
denature, which can prevent the formation of nonspecific PCR products.

7.3.2 PCR Primers
PCR primers are the oligonucleotides that are complementary to the sequences that flank the 
target region of the template. A pair (forward and reverse) of primers (typically 0.1–1 μM) is 
required. Properly designed primers are critical to the success of a PCR reaction. Computer 
software such as Primer3 is available to assist and optimize the designing of primers.

A primer must be specific to the target sequence; otherwise, nonspecific products that might 
interfere with the proper interpretation of a DNA profile might be produced. The primers within 
a pair should have similar Tm values. The estimated Tm values of a primer pair should not differ 
by more than 5°C. The Tm of an oligonucleotide primer can be predicted and calculated using 
the following equation:
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where:
 [K+] = concentration of the potassium ion

 [G + C] = GC content (%) of the oligonucleotide
 n = number of bases in the oligonucleotide

Figure 7.4 A liquid handling workstation for automated PCR assay setup. (© Richard C. Li.)
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This equation shows that the Tm can be affected by primer base composition (GC content) and 
primer length. The GC content of an oligonucleotide primer should be 40%–60%, and the length 
of an oligonucleotide primer should be 15–25 base pairs, although longer primers can be used.

A primer should not contain self-complementary sequences that may form hairpin struc-
tures interfering with the annealing of primers and the template. Additionally, the primers in 
a pair should not share similar sequences, to avoid the primers from annealing to each other. 
These annealed primers may then be amplified during PCR, creating products known as primer 
dimers, which compete with the target DNA template for PCR components.

Multiplex PCR is the simultaneous amplification of more than one region of a DNA template 
in a single reaction to achieve high-throughput analysis. Multiplex PCR consists of multiple 
primer sets in a single reaction to produce amplicons of multiple target DNA regions. The prim-
ers should be designed to yield proper sizes of amplicons to be resolvable in downstream separa-
tion and detection procedures such as electrophoresis. To prevent preferential amplification of 
one target sequence over another, the annealing temperatures should be similar among multi-
plex PCR primer pairs. Additionally, the primers should lead to similar amplification efficien-
cies among the loci to be tested. Forensic applications of multiplex PCR, such as autosomal and 
Y-chromosomal short tandem repeat analysis, are discussed in Chapters 20 and 21.

7.3.3 Other Components
Essential components include template DNA with target sequences in either linear form (nuclear 
genomic DNA) or circular form (mitochondrial DNA). Both single- and double-stranded DNA 
can be used as a template for PCR. Typically, 1–2.5 ng of template DNA is utilized for forensic 
applications using PCR.

Deoxynucleoside triphosphates (dNTPs) are the substrates for DNA synthesis. A PCR assay 
usually contains equal molar amounts (typically, 200 μM) of dATP, dCTP, dGTP, and dTTP.

Divalent cations, such as Mg2+, are required for the enzymatic activity of DNA polymerases. A 
PCR assay usually contains 1.5–2.5 mM Mg2+. Monovalent cations, such as K+ (50 mM), are usually 
recommended, and a buffer is often utilized to maintain pH between 8.3 and 8.8 at room temperature.

Controls should be used to monitor the effectiveness of PCR amplification. A positive control 
shows that PCR components such as reagents and PCR cycle parameters are working properly 
during a PCR. A standard DNA template should be used as a positive control and amplified with 
the same PCR components used on the rest of the samples. The amplification negative control 
and extraction reagent blank are discussed in Section 7.5.4.

7.4 Cycle Parameters
PCR cycling protocols may vary according to the type of analysis. Figure 7.5 shows representa-
tive PCR cycling conditions commonly used by forensic DNA laboratories. PCR utilizes a num-
ber of cycles for the replication of a specific region of a DNA template. During each cycle, a copy 
of the target DNA sequence is synthesized. A PCR cycle consists of three elements: denaturation, 
annealing, and extension. Precise and accurate temperatures at denaturation, annealing, and 
extension are critical to achieve a successful amplification. At the beginning of each cycle, the 
two complementary DNA template strands are separated at high temperatures (94°C–95°C) in a 
process called denaturation. The temperature is then decreased to allow annealing between the 
oligonucleotide primers and the template. The temperature for annealing is usually 3°C–5°C 
lower than the Tm of the oligonucleotide primer.

The annealing temperature is critical. If it is too high, a very low quantity of amplicon is 
yielded because of the failure of annealing between the primer and the template. If the anneal-
ing temperature is too low, nonspecific amplification can occur. Next, optimal temperature for 
DNA polymerase is reached, thus allowing for DNA replication (extension). By the end of each 
cycle, the copy number of the amplicon is nearly doubled (Figure 7.6).
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The number of cycles needed for PCR depends primarily on the number of copies of starting 
DNA template. The relationship can be expressed as the following equation:

 N N Ex
x

= +( )0 1

where:
 X = number of PCR cycles
 Nx = copy number of the amplicon after x cycles of PCR
 N0 = initial copy number of the template
 E = amplification efficiency of the Taq polymerase

For example, in a 28-cycle PCR amplification, the DNA template can theoretically be ampli-
fied by a factor of approximately 108. If the cycle number is increased to 34, a factor of 1010 can 
theoretically be reached.

PCR amplification can be carried out using an instrument known as a thermal cycler 
(Figure 7.7). Various types of thermal cyclers differ in the number of samples they can process, 
the sizes of the sample tubes, and temperature control features.
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Figure 7.5 Temperature parameters during thermal cycling of the PCR process. The first three 
cycles are shown. (© Richard C. Li.)
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7.5 Factors Affecting PCR
7.5.1 Template Quality
It is important to prevent degradation of the DNA during the collection and processing of evi-
dence. Degradation causes DNA to break into smaller fragments. If the damage occurs at a region 
to be amplified, the result can be failure in PCR amplification. In a degraded sample, the longer the 
amplicon length, the higher the risk of failure in PCR. Low copy number (LCN) of DNA template 
is often encountered in forensic samples. When amplifying very low levels (approximately 100 pg 
of DNA) of a template, the following phenomenon is often observed: one of the two alleles fails to 
be detected from a heterozygote and can falsely be identified as a homozygote. This phenomenon 
is also known as the stochastic effect in which the two alleles in a heterozygous individual are 
unequally detected at a low level of starting DNA template. Approaches such as increasing the 
cycle number, from 28 to 34 (Section 7.4), have been introduced to address the LCN problem.

7.5.2 Inhibitors
Inhibitors, if present, can interact with the DNA template or polymerase, causing PCR ampli-
fication failure. The presence of PCR inhibitors can be detected using an internal positive con-
trol (Section 6.3.1.1). A number of PCR inhibitors commonly encountered in evidence samples 
include heme molecules from blood, indigo dyes from fabrics, and melanin from hair samples. 
Thus, it is important to remove PCR inhibitors during DNA extraction. If PCR inhibitors are 
not eliminated during the extraction process, additional procedures such as the use of centrifu-
gal filtration devices can be used. Centrifugal filtration devices can separate molecules by size. 
After the centrifugation step, small molecular weight inhibitors are filtered by passing through 
the membrane and are discarded. Alternatively, increasing the amount of DNA polymerase or 
adding bovine serum albumin (BSA) in the reaction can overcome the inhibition effects.

7.5.3 Contamination
PCR is a highly sensitive method; therefore, procedures that minimize the risk of contamination 
are necessary. To prevent contamination, pre- and post-PCR samples should be processed in 
separate areas or at different times. Additionally, reagents, supplies, and equipment used for pre- 
and post-PCR steps should be separated as well. Protective gear should include laboratory coats 
and disposable gloves. Facial masks and hair caps may be used if necessary. Aerosol-resistant 
pipet tips and DNA-free solutions and test tubes should also be used.

The levels of contamination must be monitored using controls. Extraction reagent blanks, 
which contain all extraction reagents but no sample, monitor contamination from extraction to 
PCR. Contamination detected in an extraction reagent blank but not in an amplification-negative 
control indicates that the reagents used for extraction are contaminated. Amplification-negative 

Figure 7.7 Thermal cyclers. A thermal cycler can provide rapid temperature changes as desired to 
carry out PCR. A PCR thermal cycler (left) and a real-time PCR instrument (right). (© Richard C. Li.)
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controls, which contain all PCR reagents and no DNA template, monitor contamination of the 
amplification. Contamination observed in an amplification-negative control but not in an extrac-
tion reagent blank indicates that the contamination occurred during the amplification step. 
Contamination observed in both an amplification reagent blank and an extraction-negative con-
trol indicates that amplification reagents are contaminated. A collection of DNA profiles of each 
member of a laboratory should be readily available for comparisons. Sources of laboratory con-
tamination can be identified by comparing results with an analyst’s DNA profile.

7.6 Reverse Transcriptase PCR for RNA-Based Assays
The pathway for the flow of genetic information is called the central dogma—a term coined by 
Francis Crick in 1956. According to the central dogma, parental DNA serves as the template for 
DNA replication. With RNA synthesis or transcription, the process is carried out using the DNA 
as a template. Conversely, RNA chains can be used as templates for the synthesis of a DNA strand 
of complementary sequence, in which the end product is referred to as complementary DNA 
(cDNA). Protein synthesis, also known as translation, is directed by an RNA template (Figure 7.8).

The flow of genetic information from RNA to DNA is referred to as reverse transcription. It 
was discovered independently by David Baltimore and Howard Temin in 1970, and they shared 
the Nobel Prize for their work. Reverse transcription is carried out by a reverse transcriptase that 
forms the basis of reverse transcriptase PCR as described below.

Reverse transcriptase PCR (RT-PCR) is highly sensitive and can be used to detect very small 
quantities of mRNA. It can be utilized to measure levels of gene expression even when the RNA 
of interest is expressed at very low levels. Detecting mRNAs of tissue-specific genes can be uti-
lized for bodily fluid identification in forensic investigations (Chapter 11). During an RT-PCR 
process, a single-stranded cDNA is synthesized from a template mRNA using reverse transcrip-
tion. The cDNA is then amplified by PCR for detection and analysis.

7.6.1 Reverse Transcription
The synthesis of single-stranded cDNA from an mRNA template is catalyzed by reverse transcrip-
tase. Reverse transcriptases share many features in structure and function with DNA polymer-
ases. The catalytic function of cDNA synthesis requires a primer that anneals to a complementary 
mRNA template. The primer can be either RNA or DNA; however, DNA primers are more effi-
cient than RNA primers. During the elongation of the primer, reverse transcriptase incorporates 
the corresponding deoxyribonucleotide triphosphate according to the rules of base pairing with 
the RNA template. The RNA template is then degraded by an intrinsic RNase H activity of reverse 
transcriptase during the reverse transcription reaction. The retroviral RNase H is a domain of the 
viral reverse transcriptase enzyme. It is a nonspecific endonuclease that cleaves RNA.

Several reverse transcriptases derived from retroviruses can be used to generate cDNA 
from an RNA template. The most common reverse transcriptases used for cDNA synthesis are 
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Figure 7.8 Pathway for the flow of genetic information. (© Richard C. Li.)
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encoded by the pol gene from the avian myeloblastosis virus (AMV) and the Moloney strain of 
the murine leukemia virus (MMLV). These enzymes are genetically engineered reverse tran-
scriptases but lack RNase H activity. Genetically engineered reverse transcriptases that are 
stable at higher temperatures (up to 60°C) are also produced. Increased thermal stability of 
reverse transcriptase allows the reverse transcription to be carried out at a higher than ambient 
temperature, which eliminates RNA secondary structures and improves the specificity of the 
reaction and the yields of the synthesis of full-length cDNA.

7.6.2 Oligodeoxynucleotide Priming
Oligodeoxynucleotide primers are an essential component for a reverse transcriptase reaction. 
Different priming strategies can be utilized to synthesize cDNA from a particular target mRNA 
or from all mRNA in a sample. Gene-specific primers are designed to hybridize to a particular 
mRNA sequence for the conversion of a specific gene sequence into cDNA. Universal primers 
can hybridize to any mRNA sequence in a sample to convert all mRNAs to cDNA. Two types of 
universal primers can be used: oligo (dT) and random hexamer primers. An oligo (dT) primer 
can hybridize to the 3′ termini poly (A) tails of eukaryotic mRNAs. Reverse transcriptases with 
oligo (dT) only synthesize cDNA from transcribed genes. Random hexamer primers are another 
type of universal primer. Random hexamers are nonspecific primers that can hybridize, at mul-
tiple sites, to any RNA sequence including non-mRNA templates such as ribosomal RNA.

7.6.3 Reverse Transcriptase PCR
During an RT-PCR process, a single-stranded cDNA is synthesized from a template mRNA 
using reverse transcription. The cDNA is then amplified by PCR with a pair of oligonucleotide 
primers corresponding to a specific sequence in the cDNA (Figure 7.9).

Two strategies of RT-PCR exist: a one-step and a two-step RT-PCR (Figure 7.10). One-step 
RT-PCR combines the reverse transcription reaction and PCR in a single tube. Only gene-specific 
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Figure 7.9 cDNA synthesis. The synthesis of a DNA strand transcribed from mRNA can be carried 
out using a primer and reverse transcriptase. A gene-specific primer that amplifies a specific target 
sequence is shown. (© Richard C. Li.)
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primers can be used for the reverse transcription reaction and PCR. RNAs from either total 
RNA or mRNA can be used. This approach simplifies the reaction setup as it is useful for pro-
cessing large numbers of samples. The tubes are not opened between reverse transcription and 
PCR, thus minimizing the risk of pipetting errors and carryover contamination.

During a two-step PCR, the reverse transcription reaction and PCR are carried out in sepa-
rate tubes. Following the reverse transcription reaction, the cDNA is transferred to a separate 
tube for the PCR amplification. Either oligo (dT) or random hexamer primers can be used 
for the reverse transcription reaction. Total RNA or polyadenylated RNA can be used for the 
reverse transcriptase reaction. This allows for the ability to convert all the messages in an RNA 
sample into cDNA. The two-step RT-PCR is useful for analyzing multiple mRNAs from a single 
sample.

Two types of PCR methods can be utilized for analyzing amplified products. The end-point 
PCR method measures the amount of amplified product synthesized during PCR at the end 
of the PCR amplification. The detection of the amplified product indicates the presence of the 
mRNA of interest. With the real-time PCR method, the amplified product is quantified during 
the exponential phase of PCR. The hot-start PCR strategy is typically used to increase sensitiv-
ity, specificity, and yield. Usually, the hot-start strategy is carried out at a high temperature, for 
example 94°C, prior to PCR cycling. Under this condition, Taq DNA polymerase is activated. 
Additionally, the RNA-cDNA hybrid is denatured, and reverse transcriptase is inactivated 
at 94°C. Multiplex RT-PCR assays have been developed that can detect multiple bodily fluid 
mRNAs from single or mixed stains (Chapter  11). The commonly used RT-PCR for forensic 
identification of bodily fluids is the two-step RT-PCR. The end-point PCR is usually utilized 
with the forward primers labeled with florescent dyes at the 5′ end. The amplified products are 
separated and detected in a standard capillary electrophoresis instrument.
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8
DNA Electrophoresis

It is necessary to separate various sizes of DNA fragments so that the DNA fragment in ques-
tion can be identified and analyzed. This can be achieved by electrophoresis, a process in which 
fragments are separated based on the migration of charged macromolecules in an electric field.

8.1 Basic Principles
DNA is a negatively charged molecule in an aqueous environment, with the phosphate groups 
of DNA nucleotides carrying negative charges. DNA molecules migrate from the negative elec-
trode (cathode) toward the positive electrode (anode) in an electric field during electrophoresis. 
The electrical potential, a measure of the work required to move a charged molecule in an electric 
field, is the force responsible for moving the charged macromolecules during electrophoresis.

The electrophoretic mobility of macromolecules is primarily determined by their charge-to-
mass ratios and their shapes. However, because the phosphate group of every DNA nucleotide 
carries a negative charge, the charge-to-mass ratio of DNA molecules is almost the same even 
if the length of the DNA fragment varies. Additionally, forensic DNA testing usually analyzes 
linear DNA molecules such as double-stranded linear DNA for variable number tandem repeat 
(VNTR) analysis (Chapter 19) and single-stranded DNA for short tandem repeat (STR) analysis 
(Chapter 20). The shapes of linear DNA molecules are similar. Therefore, the electrophoretic 
separation of different-sized DNA fragments, through a series of pores of the supporting matrix 
in which the fragments travel, is based more on their sizes than their shapes.

It is obviously easier for smaller molecules to migrate through the pores of a supporting matrix 
than larger molecules; this is why smaller molecules migrate faster through the matrix. Hence, the 
electrophoretic mobility increases as the size of the DNA molecule decreases. Conversely, larger 
DNA molecules migrate much more slowly because they experience more friction and collisions 
as they travel through the net of pores in a matrix. Therefore, the separation of DNA molecules 
with different sizes can be accomplished. Figure 8.1 depicts the models for DNA electrophoresis.

8.2 Supporting Matrices
Although the actual separation occurs in an aqueous phase, most variants of electrophoresis use 
a physical support material also called a matrix. As discussed in Section 8.1, the matrix can be 
used as a molecular sieve for the separation of DNA molecules, and it also reduces diffusion and 
convection during electrophoresis. Agarose and polyacrylamide are commonly used electro-
phoresis matrices because of their good reproducibility, reliability, and versatility.
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8.2.1 Agarose
Agarose is a linear polymer composed of alternating residues of D- and L-galactose (Figure 8.2). 
A gelatinized agarose forms a three-dimensional sieve with pores from 50 to 200 nm in diameter 
(Figure 8.3). DNA fragments ranging from 50 to 20,000 base pairs in size are best resolved in 
agarose gels.

(a)

(b)

Figure  8.1 Schematic illustrations showing some of the nucleic acid separation mechanisms. 
(a) Ogston sieving model for the separation of DNA fragments through electrophoresis. Based on 
this model, the matrix used for gel electrophoresis consists of randomly distributed pores. DNA mol-
ecules are considered to behave as globular objects. During the migration, smaller DNA molecules 
migrate faster than their larger counterparts through the matrix. However, this model does not apply 
to DNA molecules with a radius much larger than the pore size of the matrix. (b) A reptation model 
presents an alternative mechanism of gel electrophoretic separation of DNA molecules. Based on 
this model, DNA molecules are flexible and can migrate through the pores of the gel matrix through 
a reptation process that is driven by an applied electric field. This model can also apply to capillary 
electrophoresis separation of DNA molecules in entangled polymer solutions. +, anode; −, cathode; 
arrow, direction of migration. (© Richard C. Li.)



8.2 Supporting Matrices

161

The electrophoretic mobility of double-stranded DNA through agarose gel matrices is 
inversely proportional to the 1og10 of the size of DNA fragments ranging from 50 to 20,000 
base pairs. The electrophoretic mobility of a linear DNA fragment is also inversely proportional 
to the concentration of agarose in the gel. A low concentration of agarose in a gel forms larger 
pores, allowing the separation of larger DNA fragments.

8.2.2 Polyacrylamide
A polyacrylamide gel matrix is very effective for the separation of smaller fragments of DNA 
(5–500 base pairs). Additionally, a single nucleotide difference in the length of a DNA fragment 
can be resolved with this type of gel. Polyacrylamide produces much smaller pore sizes than 
agarose gels and thus has a much higher resolving power than agarose gels for low-molecular- 
weight DNA molecules. A polyacrylamide gel matrix is formed by polymerization and cross-
linking reactions.

8.2.2.1 Polymerization Reaction
Long linear chains of polyacrylamide are polymerized from acrylamide monomers (Figure 8.4). 
This polymerization reaction is initiated in the presence of free radicals that are generated 
from the reduction of ammonium persulfate (APS) by N,N,N′,N′-tetramethylethylene diamine 
(TEMED). See Figure 8.5.

8.2.2.2 Cross-Linking Reaction
As shown in Figure 8.5, three-dimensionally cross-linked polyacrylamide chains can be formed 
with the use of cross-linking agents, such as N,N′-methylenebisacrylamide (BIS; Figure  8.4). 
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Figure  8.2 Chemical components of agarose, a linear polysaccharide composed of alternating 
units of D- and L-galactose. Often, the L-galactose residue has an anhydro bridge between the 3 and 
6 positions and is called 3,6-anhydro-L-galactose.

Cooling

Heating

Dissolved agarose Gelatinized agarose

Figure 8.3 Agarose chains. Gelatinized agarose consists of a three-dimensional network in which 
chains of agarose form helical fibers that aggregate into supercoiled structures. (© Richard C. Li.)
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The porosity of the resulting gel is determined by the lengths of these chains and the degree of 
cross-linking between them. Therefore, the sizes of the pores that are formed can be adjusted by 
altering the concentrations of the acrylamide monomer and the cross-linking reagent.

Polyacrylamide can also be used in a capillary electrophoresis matrix. It is very difficult to 
insert a cross-linked polyacrylamide matrix into a capillary. Therefore, a solution of a linear 
polymer (non-cross-linked) of polydimethylacrylamide (Figure  8.4) is used as a matrix for 
capillary electrophoresis. For instance, POP-4 (4% un-cross-linked polydimethylacrylamide 
polymer) is used for fragment analysis, such as forensic STR analysis (Chapter 18), in which fluo-
rescently labeled DNA amplicons are separated using electrophoresis and are identified based on 
their sizes by comparing them with a size standard. POP-6 (6% un-cross-linked polydimethyl-
acrylamide polymer) is used for sequencing, such as mitochondrial DNA (mtDNA) sequencing 
(Chapter 21). These un-cross-linked polymers are commercially available (Applied Biosystems).
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Figure  8.4 Chemical structures of (a) acrylamide, (b) N,N′-methylenebisacrylamide (BIS), and 
(c) polydimethylacrylamide (a linear polymer for capillary electrophoresis).
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Figure 8.5 Formation of polyacrylamide gel. Polymerization is followed by cross-linking in which the 
pore size of the gel is determined by its degree of polymerization and cross-linking. (© Richard C. Li.)
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8.2.2.3 Denaturing Polyacrylamide Electrophoresis
Polyacrylamide-based electrophoresis can be carried out with both double- and single-stranded 
DNA. Electrophoresis that is performed under the conditions of single-stranded DNA is called 
denaturing electrophoresis. Denatured DNA migrates through the gel as linear molecules at a 
rate independent of the base composition and sequence. With short single-stranded fragments, 
molecules differing in size by a single nucleotide can be separated. This extraordinary sensitiv-
ity to size is extremely useful for the separation of small DNA fragments that are used for DNA 
sequencing and STR analysis in forensic applications. The denaturing condition can be best 
achieved by adding chemicals such as urea or formamide to the matrix or by increasing the 
temperature or pH during electrophoresis.

8.3 Apparatus and Forensic Applications
Agarose electrophoresis is carried out in a slab gel. Agarose gel can be prepared in a variety of 
shapes and sizes and can be run in different configurations. The most common gel for forensic 
use is the horizontal slab. Polyacrylamide can be used either in a slab gel or in a capillary elec-
trophoretic apparatus.

8.3.1 Slab Gel Electrophoresis
8.3.1.1 Agarose Gel Electrophoresis
One forensic application of agarose gel electrophoresis is restriction fragment length polymor-
phism (RFLP) analysis of VNTR loci (see Chapter 19). An agarose gel is used to separate the 
DNA fragments by size ranging from 500 to 20,000 base pairs of commonly used VNTR loci for 
forensic testing. This type of electrophoresis is done under nondenatured conditions (double-
stranded DNA).

Figure 8.6 shows an example of the apparatus used for gel electrophoresis of DNA. A slab 
(3–4 mm) of agarose gel is prepared by allowing liquid agarose to gelatinize in a cast. The gel 
is submerged in a buffer tank filled with an electrophoretic buffer with proper ionic strength, 
which is necessary to achieve efficient electrical conductance. The gel contains small wells for 
loading samples. The DNA samples are mixed with a gel loading buffer prior to loading them 
into the gel. The gel loading buffer contains dyes that add color to the sample to facilitate the 
process of loading. Dyes such as bromophenol blue and xylene cyanol FF migrate toward the 
anode during electrophoresis. In most forensic applications, these dyes migrate faster than DNA 
fragments. The dyes are visible and can thus be used to track the progression of electrophoresis. 
The electrophoresis can be stopped as the dye front reaches the bottom of the gel (anode side).

Sample well– Gel

Buffer

+

Figure 8.6 Horizontal agarose slab gel apparatus. The gel can be prepared by heating an agarose 
suspension to dissolve it. The agarose solution can then be poured into a gel cast and allowed to 
cool until gelatinized. An electrophoresis buffer is poured over the gel to submerge it. The samples, 
usually mixed with loading buffer containing dye to allow visualization, are loaded into the wells of 
the submerged gel using a pipet. The electrodes are indicated. (© Richard C. Li.)
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The samples are loaded into the sample wells situated proximal to the cathode. An electric 
field is applied and the negatively charged DNA molecules migrate through the agarose toward 
the anode. Slab gel electrophoresis is capable of running multiple samples simultaneously. The 
sample is made visible by using a fluorescent intercalating reagent that can make DNA fluoresce 
under ultraviolet (UV) light (Chapter 9), either using the fluorescent intercalating reagent incor-
porated into the gel or staining the gel after electrophoresis. The separated DNA samples appear 
as bands and the sizes of the DNA fragments can be estimated by comparing them with the sizes 
of standards run concurrently.

8.3.1.2 Polyacrylamide Gel Electrophoresis
The forensic application of this apparatus is the separation of STR fragments and DNA sequenc-
ing reaction products of mtDNA. The sizes of DNA fragments that can be separated range from 
100 to 500 base pairs—much smaller than what can be separated efficiently with agarose gels. 
Single-nucleotide resolution to distinguish similarly sized fragments can be achieved with this 
technique under denatured conditions with only single-stranded DNA. Polyacrylamide thin 
slab gels (0.75–1.5 mm) are usually used. Samples are loaded into wells flanked by two pieces 
of glass. Therefore, polyacrylamide gels are usually run in a vertical configuration (Figure 8.7). 
The detection of DNA bands in polyacrylamide gels will be described in Chapter 9. The sizes of 
DNA fragments can be calculated by including an internal size standard. As with agarose gel, 
polyacrylamide gel electrophoresis is capable of running multiple samples simultaneously and 
high throughput (a measurement of the rate that a sample is processed by a given analysis) can 
be achieved. However, caution should be taken to ensure that cross-contamination does not 
occur from the spilling of samples from adjacent wells. Additionally, polyacrylamide gels are 
more difficult to prepare than agarose gels.

8.3.2 Capillary Electrophoresis
Capillary electrophoresis (Figures 8.8 through 8.11) is a newer method than the slab gel method, 
and can be utilized to separate charged macromolecules, such as DNA, RNA, polysaccharides, 
and proteins.

One essential component of the capillary electrophoresis instrument is the capillary, a thin 
hollow tube made of fused silica (which typically has a diameter between 50 and 100 μm and 
a length between 10 and 50 cm). The capillary contains a translucent detection window for the 
instrument to detect signals from the labeled DNA fragments during electrophoresis.

Linear polydimethylacrylamide is used as the matrix. Capillary electrophoresis is con-
ducted under denatured conditions for forensic applications such as STR analysis and 
mtDNA sequencing analysis. The denatured condition is achieved by including urea in the 
electrophoresis matrix and formamide during sample preparation. The injection of samples 
into the capillary is performed by an autosampler using an electrokinetic mechanism (an 
injection based on the charge of molecules). Only small quantities of sample are required 
for each injection, and any remaining sample can be saved in case an analysis needs to be 
repeated.

During electrophoresis, the capillary is connected to buffer reservoirs that are connected to 
electrodes. The efficient heat dissipation property of thin capillaries allows the separation to be 
performed at higher voltages, as the electric field (typically 200–300 V/cm) is much higher than 
that of a slab gel platform. Thus, the separation in capillary electrophoresis is rapid. During 
electrophoresis, DNA fragments migrate through the capillaries toward the anode. Similar to 
gel electrophoresis, DNA fragments are separated according to their sizes, with the shorter frag-
ments moving faster than the longer fragments. During capillary electrophoresis, linear poly-
mers in the solution can act as obstacles to the migrating DNA fragments. Thus, electrophoretic 
separation models (Figure 8.1) developed for gels are applicable for capillary electrophoresis. 
Currently, capillary electrophoresis can separate DNA fragments of up to 1000 nucleotides with 
single-nucleotide resolution.
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Capillary electrophoresis instruments are equipped with detection systems utilizing laser 
excitation sources that excite the fluorescently labeled DNA fragments. They also include fluo-
rescence detectors that record the signals emitted from the labeled DNA fragments (Chapter 9). 
In capillary electrophoresis, samples can only be analyzed sequentially so the throughput is 
much more limited than with slab gels. This disadvantage can be overcome by utilizing capillary 
array systems that can run up to 16 capillaries at one time (Figure 8.10).

8.3.3 Microfluidic Devices
Forensic DNA analysis includes the extraction of DNA from a sample, DNA quantification, 
polymerase chain reaction (PCR) amplification, capillary electrophoresis, data collection, 
and genotyping. Various microfluidic devices have been developed for forensic DNA analysis. 
Microfluidic devices control the movement of samples and reagents in a small, geometrically 
constrained environment and carry out biochemical reactions and analysis. These devices are 
made using microfabrication technology. This technology fabricates miniature structures histor-
ically used for integrated circuit fabrication in semiconductor manufacturing. The microfluidic 
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Figure 8.7 Vertical slab polyacrylamide gel. (a) Front and side view of vertical slab polyacrylamide 
gel apparatus. (b) Automated gel electrophoresis instrument, ABI PRISM 377® Genetic Analyzer, 
which was used in forensic laboratories but is now discontinued. (© Richard C. Li.)
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devices can be classified as modular and integrated devices. Overall, the microfluidic device 
has many advantages compared with conventional techniques. The reaction volume required 
in microfluidic devices is usually in the nanoliter range, which decreases reagent and sample 
consumption. Additionally, due to the high surface area-to-volume ratio of the system, the effi-
ciency of the system is greatly improved. Lastly, it can be automated, which makes the device a 
potential new platform for forensic DNA analysis.

Figure 8.9 A single-capillary electrophoresis instrument, ABI PRISM 310® Genetic Analyzer. This 
was used in forensic laboratories but is now discontinued. (© Richard C. Li.)
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Figure 8.8 Essential components of a capillary electrophoresis system. The system includes a 
capillary, buffer reservoirs, two electrodes, a laser excitation source, a fluorescence detector, and 
an autosampler that holds the sample. Sample injection, electrophoresis, and data collection are 
automated and controlled by a computer. (© Richard C. Li.)
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8.3.3.1 Modular Microfluidic Devices
The modular devices are separate devices for DNA extraction, quantitation, amplification, electropho-
resis, and so on. Each processing step is carried out on different devices. The modular design is flexible, 
allowing laboratories to choose the best device suited to the procedure for each step. For example, 
an electrophoresis microfluidic device has been developed (Figure 8.12). The electrophoretic assay is 
carried out on a modular microfluidic chip format using the same basic principle of capillary electro-
phoresis. The single-use chip contains wells for samples, a sieving polymer matrix for electrophoresis, 
and size standards. The wells are connected through microchannels. When the interconnected wells 
and channels are filled, the chip becomes an integrated electrical circuit. Each well is then connected 
to an electrode with an independent power supply. DNA molecules, carrying negative charges, are 

Figure  8.10 Photo of a multicapillary electrophoresis instrument. ABI PRISM 3500® Genetic 
Analyzer. (© Richard C. Li.)

Figure 8.12 A modular instrument for gel electrophoresis. Left: Agilent 2100 Bioanalyzers contain 
16-pin electrodes that fit into the wells of a chip. Right: The chip can accommodate sample wells, 
gel wells, and a well for a size standard. (© Richard C. Li.)

Figure 8.11 Components of the ABI PRISM 3500® Genetic Analyzer. A capillary array (left), elec-
trophoretic buffer chambers (middle), and an autosampler (right). (© Richard C. Li.)
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electrophoretically separated based on their size. Smaller molecular weight fragments migrate faster 
than larger fragments. The polymer matrix contains fluorescent dye molecules that intercalate with 
DNA in a sample, which can be detected by laser-induced fluorescence. The duration of electropho-
resis is approximately 30 min. The sensitivity is approximately 0.1 ng/μL; thus, sample consumption 
is small. The device provides the sizing and quantitation information of the nucleic acid fragment. 
In addition to DNA, the device can also be used for the analysis of RNA and protein. In the forensic 
laboratory, it has been used for the quantitation of amplified mtDNA product to monitor successful 
amplification and to normalize the quantities of DNA template for cycle sequencing.

8.3.3.2 Integrated Microfluidic Devices
It is possible to integrate several different modular devices into a single device (Figure 8.13). These 
devices are also known as “micro-total analysis” systems. An integrated system is a fully automated 
process. It also reduces the risk of contamination from laboratory sources. Full integration of all the 
constituent steps required for forensic STR DNA analysis has been achieved by a rapid DNA instru-
ment. This instrument integrates various microfluidic devices including DNA extraction, PCR ampli-
fication, electrophoresis, detection, and genotyping steps into a single process on a cartridge. The 
cartridge, made from a variety of materials such as polycarbonate, incorporates pumps and valves 
controlling fluidic movement for the delivery of samples and prefilled reagents to the chambers for 
processing. DNA extraction usually utilizes silica-coated magnetic particles that can be collected by 
a magnet for DNA extraction. Microquantitative PCR utilizes the Taqman real-time quantitative 
PCR technique. During amplification, multiplex PCR is accomplished using commercial STR kits. 
Additionally, the cartridge also integrates a microcapillary electrophoresis chip for the separation of 
amplified products. The fluorescently labeled DNA fragments are detected based on laser-induced 
fluorescence. Data analysis and genotyping are then carried out to produce a DNA profile, which is 
compatible with the CODIS DNA database (Chapter 24). Rapid DNA instruments are fully automated 
platforms that are designed to process a single-source sample such as a buccal swab to generate a DNA 
profile and database search in less than 2 h. The goal is for these instruments to be deployed in field 
tests at the scene or at the booking stations operated by trained law enforcement agents.

8.4 Estimation of DNA Size
8.4.1 Relative Mobility
The relative mobility (Rf) of a DNA molecule during electrophoresis can be calculated as 
the distance of band migration divided by the distance of tracking dye migration. The DNA 

Figure 8.13 Integrated instruments for rapid DNA analysis. Cartridges developed by IntegeneX 
(left) and Zygem (right). (© Richard C. Li.)
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band migration is the distance from the sample origin to the center of the band. The track-
ing dye migration distance extends from the sample origin to the center of the dye band 
(Figure 8.14). To estimate the size of the DNA, standards containing DNA of known size 
and questioned samples are run on the same gel at the same time. The standards can be used 
to estimate the size of an unknown DNA molecule. A plot of log10 base pair of the standards 
versus Rf for a given gel can be constructed. A linear relationship, over a size range, between 
log10 base pair of the DNA molecule and the Rf can be observed. The Rf of the test sample is 
interpolated on the plot from which the size of an unknown DNA molecule can be deter-
mined (Figure 8.15).
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Figure 8.14 Measurement of the electromobility of DNA. Questioned DNA samples are analyzed 
concurrently with a set of standard DNA fragments of known size. The distances of DNA migration 
can thus be measured. The samples are usually mixed with a gel loading buffer prior to loading 
samples to the gel. The buffer contains dyes that add color to the sample to facilitate the process of 
loading. Dyes such as bromophenol blue and xylene cyanol FF migrate toward the positive electrode 
during electrophoresis. They can be used for tracking purposes as well. (© Richard C. Li.)
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Figure 8.15 Estimation of the size of a DNA fragment. A plot of size standards versus relative 
migration during electrophoresis is shown. The size of the questioned DNA fragment can be esti-
mated using this plot. (© Richard C. Li.)
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8.4.2 Local Southern Method
The size of a DNA fragment is determined by an internal size standard that is a set of synthetic 
fragments with known molecular weight. The standard is labeled with a different colored dye so 
that it can be spectrally distinguished from DNA fragments of an unknown size (Figure 8.16). 
The sample including the internal size standard is then mixed in with DNA samples and is 
analyzed by electrophoresis. To determine the sizes of DNA fragments, a standard curve using 
the internal size standards must be established based on the reciprocal relationship between 
the electrophoretic mobility and the sizes of DNA fragments. However, this relationship is not 
exactly linear; instead, it appears to be sigmoidal (Figure 8.17). Therefore, the Local Southern 
method, described by Sir Edwin Southern, is used to generate standard curves for determining 
the sizes of DNA fragments. The equation is as follows:
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Figure 8.16 Electropherogram of a synthetic molecular weight size standard, GeneScan™ 500 size 
standard (Applied Biosystems). RFU, relative fluorescence units. (© Richard C. Li.)
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Figure 8.17 Estimation of unknown DNA fragment sizes using the Local Southern method. The migra-
tion of ssDNA fragments (20–1200 base pairs) is not linear over the entire fragment size range and is 
somewhat sigmoidal. To determine the size of a DNA fragment in question, two curves are generated. 
The first curve is generated using three standard points: two points (a and b) that are smaller and one 
point (c) that is larger than the questioned fragment. As a result, a fragment size (L1) is determined. 
The second curve is then generated using an additional three standard points: one point (b) that is 
smaller and two points (c and d) that are larger than the questioned fragment. Thus, a fragment size, 
L2, is determined. The two values (L1 and L2) are averaged to determine the size (L) of the questioned 
fragment. (Adapted from Southern, E.M.,Anal Biochem, 100, 319–323, 1979.)
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In the equation, L is the size of the unknown fragment; M is the mobility of the fragment; 
and C, M0, and L0 are constants that are obtained from the fragments of known size. To 
determine the size of an unknown fragment, two curves are generated based on the equa-
tion. Each curve utilizes three data points. The first curve utilizes two size standards that 
are smaller and one size standard that is greater than that of the unknown fragment. As a 
result, size L1 is obtained. The second curve utilizes a size standard that is smaller and two 
size standards that are greater than that of the unknown fragment. Thus, size L2 is obtained. 
Finally, the average of L1 and L2 is defined as the size of the unknown fragment. In this 
method, only the size standards that are in the proximity of the unknown fragment are analyzed. 
However, the accuracy of the standard curve relies on the proper separation of the standards 
during electrophoresis.
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9
Detection Methods

A variety of techniques are available for the detection of DNA fragments in forensic DNA analy-
sis. For example, the direct detection of DNA fragments in a gel can be achieved via staining. 
The detection of DNA probes in a hybridization-based assay can be performed with radioiso-
topes, colorimetric assays, and chemiluminescence labeling. For polymerase chain reaction 
(PCR)-based assays, DNA primers can be labeled directly with fluorescent dyes.

9.1 Direct Detection of DNA in Gels
This section describes two simple and rapid detection methods used for detecting DNA: stain-
ing agarose gels with fluorescent intercalating dyes and staining denatured polyacrylamide gels 
with silver.

9.1.1 Fluorescent Intercalating Dye Staining
The location of DNA in an agarose gel can be determined directly by staining with low con-
centrations of fluorescent intercalating dyes (Chapter 6) such as ethidium bromide (Figures 9.1 
through 9.3). These techniques allow the detection of DNA bands as small as 10 ng in agarose 
gels. Staining of DNA in agarose gels can be achieved by including an intercalating dye in the gel 
or staining the gel after electrophoresis in a dye-containing solution, followed by a washing step 
known as de-staining to reduce nonspecific staining. Historically, ethidium bromide-stained 
gels were photographed with a standard ultraviolet transilluminator at approximately 300 nm 
using a camera with an orange filter, whereas gels can currently be documented using digital 
techniques. When examining a DNA-containing gel under a UV lamp, the eyes and the skin 
should be protected from UV exposure. Ethidium bromide is a mutagen and a potential car-
cinogen. Ethidium bromide should be handled according to the Material Safety Data Sheet and 
safety protection wear should be used while handling the chemical. Ethidium bromide waste is 
usually disposed of as hazardous waste and is handled in accordance with laboratory guidelines. 
Alternatives to ethidium bromide are available, for example, fluorescent dyes such as SYBR® 
stains (Molecular Probes; Figures 9.2 and 9.3). Some of these alternatives are less mutagenic and 
have better performance than ethidium bromide.

9.1.2 Silver Staining
Electrophoretically separated DNA fragments can also be detected with silver nitrate staining. 
Silver staining of polyacrylamide gels has been used for the amplified fragment length poly-
morphism (AFLP; see Chapter  19) method of variable number tandem repeat (VNTR; see 
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Chapter 19) profiling. The sensitivity of silver staining is approximately 100 times higher than 
that obtained with ethidium bromide, and silver staining is less hazardous than ethidium bro-
mide detection. Also, the developing chemicals are readily available at low cost.

Silver staining involves processing a gel followed by exposure to a series of chemicals. First, 
the gel is submerged in a silver nitrate solution. Silver ions are positively charged, and DNA is 
negatively charged. Therefore, silver ions bind to the DNA and are subsequently reduced using 
formaldehyde to form a deposit of metallic silver on the DNA in the gel (Figure 9.4). A photo-
graph of the gel with images of the silver-stained DNA strands is kept as a permanent record. 
Alternatively, the gels may be sealed and preserved for record purposes. One disadvantage of 
this method is that silver stains RNA and proteins along with DNA. The presence of restric-
tion enzymes and polymerase should therefore be minimized. Additionally, bands from both 
complementary DNA strands may be detected in a denatured polyacrylamide gel, which leads 
to a two-band pattern.
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Figure 9.2 Intercalating agents used as nucleic acid stains. (a) Chemical structure of ethidium 
bromide. Ethidium bromide has UV absorbance. The emission maximum of the DNA–dye complex 
in aqueous solution is approximately 590 nm. (b) Chemical structure of SYBR Green 1. The stain 
is a cyanine dye that binds to DNA and is used as a nucleic acid stain. The excitation and emission 
maxima of the DNA–dye complex are 494 and 521 nm, respectively. The stain preferentially binds 
to double-stranded DNA rather than single-stranded DNA and RNA.
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Figure  9.1 Schematic illustration showing binding of an intercalating agent, ethidium bromide 
(EtBr) to DNA. It intercalates into the minor groove of DNA. (© Richard C. Li.)
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9.2 Detection of DNA Probes in Hybridization-Based Assays
9.2.1 Radioisotope Labeled Probes
Radioisotope probe labeling was used for early versions of VNTR testing and DNA quantita-
tion. Labeling can be accomplished in several ways (Figure 9.5). For example, nick translation 
incorporates labeled deoxyribonucleotides (dNTPs) into double-stranded DNA. DNase I is used 
to introduce single-strand nicks within the DNA fragment to be labeled. Next, DNA Polymerase 
I recognizes the nicks and replaces the preexisting nucleotides with new strands containing 
labeled dNTPs, resulting in the generation of 32P-labeled double-stranded DNA molecules. 32P, 
with a half-life of approximately 14 days, is the most common radioisotope used in this tech-
nique. Nick translation can utilize any dNTP labeled with 32P.

Prior to hybridization, the probe is denatured into single-stranded fragments by boiling for 
a few minutes followed by rapid cooling on ice. After the hybridization process, these probes 
can be visualized by exposing the DNA-containing membrane to an x-ray film. The radioac-
tive object is commonly placed in an x-ray cassette. The energy released from the decay of the 
radioisotopes is absorbed by the silver halide grains in the film emulsion and forms a latent 
image. A chemical development process amplifies the latent image and renders it visible on 
film (Figure  9.6). Because most 32P emissions pass through the thin film emulsion without 
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Figure 9.4 Silver staining of DNA. Silver (Ag+) ions bind to DNA and are reduced to metallic silver 
(Ag) to form dark particles. (© Richard C. Li.)

Figure 9.3 A DNA–dye complex emitting fluorescence on UV-light exposure. Ethidium bromide–
containing agarose gel (left). SYBR Green 1–containing agarose gel (right). (© Richard C. Li.)
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Figure 9.5 DNA probe labeling using dNTPs. (a) Nick translation method. A DNase is utilized to 
create nicks along a DNA strand. Tagged nucleotides (one or more than one of the dNTPs) are then 
incorporated into the DNA strand using a DNA polymerase. DNA synthesis extends from the 5′ to 
3′ end and the original strand is degraded. (b) Random primer labeling method. A template DNA 
is denatured and separated into single strands. A random mixture of hexameric deoxynucleotide 
fragments, as primers, is then annealed to the template strand. The tagged nucleotides are then 
incorporated by the Klenow fragment of the DNA polymerase. (© Richard C. Li.)
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contributing to the final image, the detection process may require long exposure times. Signal 
intensity can be enhanced, however, by using intensifying screens at low temperatures. The 
screens emit photons upon receiving radioactive β-particles, thus further enhancing signals. 
Additionally, highly sensitive x-ray film can be used. One disadvantage of using 32P is that it is 
a safety hazard. Additionally, autoradiography is a lengthy process. Therefore, nonradioisotopic 
detection methods have become popular alternatives.
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Figure 9.5 (Continued) (c) PCR method. DNA templates are denatured and then annealed to prim-
ers flanking the region of interest. During the DNA synthesis phase of a PCR cycle (see Chapter 7), 
tagged nucleotides are incorporated into the DNA strand using a Taq DNA polymerase, producing 
new double-stranded DNA. The process is repeated for many cycles. Only the first cycle is shown. 
(© Richard C. Li.)
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Figure 9.6 Autoradiography. Exposure to radiation causes halide crystals to release electrons, thus 
reducing silver (Ag+) ions to metallic silver (Ag). (© Richard C. Li.)
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9.2.2 Enzyme-Conjugated Probe with Chemiluminescence Reporting System
The use of alkaline phosphatase (AP)-conjugated probes with chemiluminescent substrates 
comprises a highly sensitive nonradioisotopic detection system.

Alkaline phosphatase can cleave the phosphate groups from a variety of substrate molecules. 
Its enzymatic activity can be measured using dioxetane-based chemiluminescent substrates 
such as Lumigen® PPD (Figure 9.7). The Lumi-Phos Plus kit of Lumigen Inc. contains this sub-
strate and can serve as a detection system for slot blot assays for DNA quantitation (Chapter 6) 
and RFLP assays for VNTR profiling (Chapter 19). AP catalyzes the cleavage of the phosphate 
ester of Lumigen® PPD, resulting in the release of a photon (Figure 9.8). The Lumigen® PPD 
substrate yields a long-lasting light emission that can be detected by exposure to x-ray film. This 
system provides a highly sensitive chemiluminescent detection method for AP-conjugated DNA 
probes in solution or on a solid matrix such as a membrane (Table 9.1).

9.2.3 Biotinylation of DNA with Colorimetric Reporting Systems
9.2.3.1 Biotin
Biotin, also known as vitamin H, is a water-soluble molecule found in egg yolk (Figure 9.9). It 
can be incorporated onto oligonucleotide probes without interfering with the ability of probes 
to hybridize because of its small size (molecular weight: 244.31 u). Signals from a biotinylated 
probe can be detected with an enzyme-conjugated avidin system. Two steps are required to 
detect biotin-labeled probes. First, an avidin conjugate consisting of a reporter enzyme is added. 
Then, the reporter enzyme is assayed with substrates.

9.2.3.2 Enzyme-Conjugated Avidin
Avidin is a glycoprotein found in egg white; it binds to biotin with extremely high affinity. Thus, 
a biotin–avidin complex is very stable. However, avidin detection has a high background due 
to nonspecific binding. The nonspecific binding can be reduced by replacing avidin with its 
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hv
Lumigen®PPD

AP-conjugated probe

Figure  9.7 Detection system using AP-conjugated probe. Chemiluminescence is generated by 
using the Lumigen® PPD as an AP substrate. (© Richard C. Li.)
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Figure 9.8 Lumi-Phos Plus contains Lumigen® PPD (4-methoxy-4-[3-phosphatephenyl]spiro[1,2-
dioxetane-3,2′-adamantane], disodium salt). AP catalyzes the removal of the phosphate group of 
Lumigen® PPD and generates a chemiluminescent intermediate that is subsequently broken down 
to the excited state of methyl-m-oxybenzoate. The decay of the excited state end-product releases 
a photon.
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streptavidin counterpart from Streptomyces avidinii. To detect binding, an enzyme-conjugated 
streptavidin such as horseradish peroxidase (HRP)-conjugated streptavidin can be used. HRP 
isolated from horseradish roots contains heme residues that catalyze the oxidation reactions of 
substrates (Chapter 12).

9.2.3.3 Reporter Enzyme Assay
HRP can be assayed with colorimetric, chemiluminescent, or fluorogenic substrates. One 
common colorimetric substrate for forensic DNA testing is 3,3′,5,5′-tetramethylbenzidine 
(TMB), which is oxidized by the peroxidase to form an insoluble precipitate of intense blue at 
an acidic pH (Figure 9.10). Because the colored precipitate is difficult to remove from mem-
branes, TMB is not suitable if reprobing for RFLP analysis is required. This technique has 
been used for forensic DNA testing such as slot blot assays for DNA quantitation (Table 9.1). 
A chemiluminescent substrate such as a luminol-based reagent can also be utilized with 
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Figure 9.9 Nonradioactive tags for labeling and detecting nucleic acids. (a) Chemical structure 
of biotin, also known as vitamin H. Molecular formula: C10H16N2O3S. Molecular weight: 244.31. 
(b) Chemical structure of digoxigenin. Molecular formula: C23H34O5. Molecular weight: 390.51.

Table 9.1 Forensic Applications of Enzyme Reporting Systems for Detecting DNA

Reporter 
Enzyme Labeling

Detection 
Mechanism Substrate

Forensic 
Application

AP AP-conjugated 
probe

Chemiluminescent Lumigen®PPD RFLP; blot 
assay for DNA 
quantitation

Horseradish 
peroxidase 
(HRP)

Biotinylated 
probe, 
recognized by 
streptavidin 
conjugated 
with HRP

Colorimetric/
chemiluminescent

TMB/luminol Blot assay for 
DNA 
quantitation

Biotinylated 
primer, 
recognized by 
streptavidin 
conjugated 
with HRP

Colorimetric TMB Reverse blot 
assay for DQA1 
typing and for 
mtDNA typing



Forensic Biology, Second Edition

182

HRP. The peroxidase catalyzes the oxidation of luminol to form a chemiluminescent product 
(Figure 9.10).

9.3 Detection Methods for PCR-Based Assays
9.3.1 Fluorescence Labeling
9.3.1.1 Fluorescent Dyes
The advantages of fluorescence detection methods include a higher sensitivity and broader 
dynamic range than comparable colorimetric detection methods. Furthermore, they have the 
capacity for simultaneous analysis of complex samples such as multiplex PCR products with dif-
ferent fluorescent labels (Figure 9.11), allowing the distinction of various amplicons. Commonly 
used fluorescent dyes in DNA labeling emit fluorescence in the range of 400–600 nm (Figures 9.12 
and 9.13).

9.3.1.2 Labeling Methods
Fluorescent dye labeling can be incorporated into a DNA fragment using a 5′-end fluorescently 
labeled oligonucleotide primer (Figures 9.14 and 9.15). The dye-labeled primer method is usu-
ally used for STR profiling (see Chapter 20) in which only one primer from each primer pair is 
labeled; therefore, only one strand can be detected. The two-band pattern observed with silver 
staining does not appear with this method. Additionally, dye-labeled primers allow multiplex 
PCR amplifications in the same tube.

Biotinylated
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amplicon

Biotinylated
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amplicon

Biotinylated
probe or
amplicon
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(colorless)
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amplicon
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(b)

(c)

(d)

H
RP

HRP
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HRP
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Figure 9.10 Detection system using biotinylated DNA probes with colorimetric and chemilumi-
nescent reactions. (a) Biotinylated probe is incubated with a streptavidin (SA) and horseradish 
peroxidase (HRP) conjugate complex. (b) Biotin is recognized by the complex. Reporter enzyme 
assays can be carried out using either a colorimetric reaction with a TMB substrate (c) or a chemi-
luminescent reaction using luminol analogs (d). (© Richard C. Li.)
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Figure  9.11 Emission spectra of common fluorescent dyes used for forensic DNA analysis. 
(© Richard C. Li.)
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Figure 9.12 Examples of fluorescent dyes and their applications in STR kits. Note: Globalfiler 
and AmpFlSTR Yfiler are manufactured by Applied Biosystems. PowerPlex Fusion system and 
PowerPlex® Y23 System are manufactured by Promega.
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Fluorescent dye

Fluorescent labeled amplicon

Primer

DNA polymerase

Figure 9.14 A fluorescent dye–labeled primer can be used for the amplification of DNA. The 
dye is conjugated at the 5′ end of the primer. The amplified product is fluorescently labeled. 
(© Richard C. Li.)
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Figure 9.13 Chemical structures of representative fluorescent dyes. Fluorescein, 3′,6′-dihydroxyspiro[2-
benzofuran-3,9′-xanthene]-1-one; FAM, 5(6)-carboxyfluorescein; JOE, 6-carboxy-4′,5′-dichloro-2′,7′-
dimethoxy-fluorescein; TMR, 5-carboxytetramethylrhodamine; ROX, 5(6)-carboxy-X-rhodamine; λex, 
peak excitation wavelength (nm); λem, peak emission wavelength (nm).
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Alternatively, fluorescent dye labeling of DNA fragments can be carried out by incorporating 
fluorescently labeled dideoxynucleotides (ddNTPs) in the PCR product. This labeling method is 
usually used in DNA sequencing such as mtDNA sequence profiling (Chapter 23).

9.3.1.3 Fluorophore Detection
The fluorophore is a component of a florescent dye molecule that causes the molecule to be fluo-
rescent. First, a laser strikes a fluorophore covalently linked to the end of a DNA fragment. 
An electron of the fluorophore is then excited, rising to an excited state from a ground state. 
The excited electron then descends to the ground state and releases a photon (Figure 9.16). The 
emitted photon has a longer wavelength (emission spectrum) than that of the excitation pho-
ton (excitation spectrum). The wavelengths of excitation and emission spectra (Figure 9.17) are 
largely dependent on the chemical structure of the fluorophore.

Lasers are commonly used as excitation sources because laser light emissions have high inten-
sity and are monochromatic (single wavelength). The argon ion gas laser is frequently used in 
applications such as fluorescence-labeled STR and mtDNA sequence analysis because the excita-
tion wavelength of commonly used fluorescent dyes matches the wavelength of the argon laser.

Optical filters are used to filter out undesired light and to allow only one particular wave-
length to pass through. An essential optical filter consists of three components: an excitation fil-
ter, a dichroic beam splitter, and an emission filter. The excitation filter selectively transmits light 
from an excitation source. The light is then directed by the dichroic beam splitter to DNA mol-
ecules labeled with fluorescent dyes. The light emitted from a fluorophore is also transmitted by 
the dichroic beam splitter toward the detector. The emission filter selectively blocks undesired 
light, thus transmitting a specific wavelength of the emitted fluorescence. The light intensity 
emitted from a fluorophore is detected using a photosensitive device such as a charge-coupled 
device (CCD). The signal from the fluorophore is collected and converted to an electronic signal 
expressed in an arbitrary unit such as a relative fluorescence unit (RFU). Signals from multiple 
fluorophores in the same sample can be recorded separately using optical filters and a math-
ematical matrix (fluorophore separation algorithm). The function of a matrix is to subtract the 
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color overlaps of the various fluorescent dyes. The matrix can be established by the calibration 
of fluorescently labeled standards.
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10
Serology Concepts

10.1 Serological Reagents
10.1.1 Immunogens and Antigens
A foreign substance that is capable of eliciting antibody formation when introduced into a host 
is called an immunogen. Natural immunogens are usually macromolecules such as proteins and 
polysaccharides. Other molecular structures can also act as immunogens, for example, glyco-
lipids (such as A, B, and O blood group antigens) and glycoproteins (such as Rh and Lewis 
antigens). However, they must be foreign to their hosts. The molecular structure of an immu-
nogen, usually a small portion recognized by an antibody, is called an epitope or determinant 
site. An immunogen usually consists of multiple epitopes and is thus considered multivalent 
(Figure 10.1). Each epitope can elicit the production of its own corresponding antibody.

An antigen is a foreign substance that is capable of reacting with an antibody. All immu-
nogens can be considered antigens, but not all antigens can elicit antibody formation. Hapten 
is one example of a substance that is antigenic but not immunogenic. Haptens are chemical 
compounds that are too small to elicit antibody production when they are introduced to a host 
animal. However, a hapten can be coupled to a carrier, usually a macromolecule, to produce 
antibodies. A hapten-conjugated carrier can become immunogenic to elicit the formation of an 
antibody specific to the hapten. The resulting antibody can bind to free haptens. Certain con-
trolled substances such as cocaine and amphetamines are haptens and can be detected through 
corresponding antibodies for forensic toxicological analysis.

10.1.2 Antibodies
Antibodies, also known as immunoglobulins, are capable of binding specifically to antigens and 
are designated with an Ig prefix. The five major classes of immunoglobulins are designated IgG, 
IgA, IgM, IgD, and IgE. Additionally, IgG immunoglobulins can be further divided into four 
subclasses (IgG1–IgG4) and IgA immunoglobulins can be further divided into two subclasses 
(IgA1 and IgA2). Thus, there are a total of nine immunoglobulin isotypes in humans. Isotypes are 
the immunoglobulins that differ based on the molecular variations in the constant domains of 
the heavy and light chains (Figure 10.2). IgD, IgE, and IgG are usually monomers. IgM can be a 
membrane-bound monomer or a cross-linked pentamer (secreted form). IgA can be a monomer, 
dimer, or trimer. In an immune response, an initial exposure to an immunogen elicits a primary 
response, producing IgM immunoglobulins. Further exposure to the immunogen can elicit a sec-
ondary response, producing IgG, IgA, IgE, and IgD immunoglobulins. IgG is the most abundant 
immunoglobulin in serum. A majority of serology tests are based on the IgG immunoglobulins.
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Immunoglobulins have many similarities in their molecular structures. Figure 10.2 illustrates 
a diagram of the IgG molecule. The structures of immunoglobulins were first revealed by Gerald 
Edelman and Rodney Porter who shared a Nobel Prize in 1972. Immunoglobulins are composed 
of four polypeptide chains: two heavy (H) chains and two light (L) chains. The polypeptide chains 
are linked by disulfide bonds into a Y-shaped complex. The H chain can be divided into fragment 
antigen-binding (Fab) and fragment crystallizable (Fc) fragments. The L chain consists of a Fab 
fragment only. A typical antibody has two identical antigen-binding sites and is thus consid-
ered bivalent. The antigen-binding activity is located within the Fab fragments. In particular, 
the N-terminal ends of the L and H chains together form antigen-binding sites. At the amino 
acid sequence level, both H and L chains have variable and constant domains (Figure 10.2). The 
variable domains are located at the N-terminal ends of the immunoglobulins. Additionally, three 
small hypervariable regions are located within the variable domain of each chain.

Epitope A
Epitope B

Figure 10.1 Multivalent immunogen. A protein with two different epitopes is shown. (© Richard C. Li)
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Figure 10.2 Immunoglobulin IgG structure. Immunoglobulin IgG is composed of light and heavy 
chains that contain variable domains. The remaining portions of chains form the constant domains. 
The variable domains of both light and heavy chains contain three hypervariable regions that form 
the antigen-binding site of the immunoglobulin. (© Richard C. Li.)
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The diversity in the amino acid sequences of these hypervariable regions determines the 
specificity of the antigen-binding sites. The hinge regions provide flexibility to the antibody 
molecule and are important for the efficiency of the binding and cross-linking reactions. The 
basal portion of the H chain consists of Fc fragment.

The binding affinity and specificity of antibodies make them useful reagents for serological 
testing. Two types of antibodies are commonly used: polyclonal and monoclonal antibodies.

10.1.2.1 Polyclonal Antibodies
To produce an antibody, an immunogen is usually introduced into a host animal. A multiva-
lent immunogen is capable of eliciting a mixture of antibodies with diverse specificities for the 
immunogen. As a result, a polyclonal antibody is produced by different B lymphocyte clones in 
response to the different epitopes of the immunogen. Antibodies can be circulating (in blood or 
other bodily fluids) or tissue bound (in cell surface antibodies). Circulating immunoglobulins 
are referred to as humoral antibodies.

The blood from an immune host is drawn and allowed to clot, resulting in the formation of a 
solid consisting largely of blood cells and a liquid portion known as serum containing antibod-
ies (Figure 10.3). Such a preparation of humoral antibodies is also called a polyclonal antiserum. 
Depending on the type of animal used, the antibodies produced are classified as avian (B), rabbit 
(R), or horse (H) type. The characteristics of polyclonal antibodies may vary if they are produced 
from different individual host animals of the same species. Variations in reactions among differ-
ent sources of antibodies should be monitored by quality-control procedures.

10.1.2.2 Monoclonal Antibodies
To produce a monoclonal antibody, spleen cells are harvested from a host animal, such as a 
mouse, inoculated with an immunogen (Figure 10.4). Next, the plasma cells of the spleen, which 
produce antibodies, are fused with myeloma cells. Since only a small population of cells fuse, 
a selection step is needed to allow only fused cells to grow (Figure 10.4). The fused cells, called 
hybridoma cells, are immortal (proliferate indefinitely) in cell cultures. Pools of hybridoma cells 
are diluted into single clones and are allowed to proliferate. The clones are then screened for the 
specific antibody of interest.

Whole blood
(no anticoagulant)

Clotting
Serum

Clot

Figure 10.3 Serum component of blood. The blood of an immunized animal is collected in the 
absence of an anticoagulant and is allowed to clot. The resulting liquid portion of the blood is serum. 
(© Richard C. Li.)
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The desired hybridoma clone can be maintained indefinitely, and it produces a monoclonal 
antibody that reacts with a single epitope. The hybridoma-derived monoclonal antibodies are 
specific and homogenous, and can be obtained in unlimited quantities. Monoclonal antibodies 
have been utilized in many serological assays, as discussed in Chapter 11. However, they have 
certain limitations in serology assays. For instance, monoclonal antibodies react with only a 
single epitope of a multivalent antigen and, therefore, cannot form cross-linked networks in 
precipitation assays (see Section 10.3.2.1).

10.1.2.3 Antiglobulins
Immunoglobulins are proteins that can also function as immunogens. If a purified foreign 
immunoglobulin or a fragment of a foreign immunoglobulin is introduced into a host, the 
antibodies produced are known as antiglobulins. Antiglobulins that are specific to a particular 
isotype can be produced in laboratories. In addition to specific antiglobulins, it is possible to 
produce nonspecific antiglobulins, which recognize an epitope that is common to all isotypes of 
an immunoglobulin class, such as the Fc portion of the heavy chain of all subclasses of human 
IgG. Antiglobulins are important reagents in many serological tests.
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Figure 10.4 Preparation of a monoclonal antibody. A mouse is immunized with an immunogen, 
and its spleen cells are fused with myeloma cells to generate hybridoma cells. The clone that syn-
thesizes and secretes the monoclonal antibody of interest can then be identified. (© Richard C. Li.)
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10.2 Strength of Antigen–Antibody Binding
The binding of an antigen to its specific antibody is mediated by the interaction between the epi-
tope of an antigen and the binding site of its antibody. Noncovalent bonds can be formed during 
antigen–antibody binding. Various forces act cooperatively during antigen–antibody binding. 
These include hydrogen bonding, hydrophobic interactions that exclude water molecules from 
the area of contact, and van der Waals forces arising from the asymmetric distribution of the 
charges of electrons. The binding process occurs rapidly and the formation of the antigen–anti-
body complex is reversible. Such binding occurs at short distances when the antigen and anti-
body are in close proximity. Additionally, the strongest binding occurs only if the shape of the 
epitope fits the binding site of the antibody. The strength of the interaction between the antigen 
and the antibody depends on two characteristics, designated affinity and avidity.

Affinity is the energy of the interaction of a single epitope on an antigen and a single bind-
ing site on a corresponding antibody (Figure 10.5). The strength of the interaction depends on 
the specificity of the antibody for the antigen. Nevertheless, antibodies can bind with lower 
strength to antigens that are structurally similar to the immunogen. Such binding is known as 
cross-reaction.

Avidity is the overall strength of the binding of an antibody and an antigen (Figure 10.6). 
Since an antigen is usually considered multivalent and an antibody is bivalent, the avidity 
reflects the combined synergistic strength of the binding of all the binding sites of antigens and 
antibodies rather than the sum of individual affinities. It also reflects the overall stability of an 
antigen–antibody complex that is essential for many serological assays.

10.3 Antigen–Antibody Binding Reactions
The binding of an antigen to an antibody is an equilibrium reaction consisting of three types 
of reactions. The primary and secondary reactions form the basis for many forensic serological 
assays and will be discussed in the following subsections. The third type is called the tertiary 
reaction. It is used to measure in vivo immune responses such as inflammation and phagocyto-
sis. Because most forensic serology tests are in vitro assays, the tertiary reaction is not commonly 
utilized in forensic serology testing and will not be discussed here.

-S-S-

Figure 10.5 Affinity is a measure of the interaction between a single epitope on an antigen and a 
single binding site on an antibody. (© Richard C. Li.)



Forensic Biology, Second Edition

194

10.3.1 Primary Reactions
A primary reaction is the initial binding of a single epitope of an antigen (Ag) and a single bind-
ing site of an antibody (Ab) to form an antigen–antibody complex (Figure 10.7). This rapid and 
reversible binding reaction can be expressed as

 Ag Ab AgAb+   
At equilibrium, the strength of the interaction can be expressed as the affinity constant (Ka) that 
reflects the affinity of binding, where:

 
Ka

AgAb

Ag Ab
=

[ ]
[ ][ ]  

The square brackets indicate the concentration of each component at equilibrium. Ka is the 
reciprocal of the concentration of free epitopes when half the antibody-binding sites are occu-
pied. Thus, a higher Ka corresponds to a stronger binding interaction.

Techniques such as enzyme immunoassays, immunofluorescence assays, radioimmunoas-
says, and dye-labeled immunochromatography can measure the concentrations of antigen–
antibody complexes formed by primary reactions (Chapter 11). These techniques are the most 
sensitive for detecting the presence of an antigen and an antibody in a sample. Additionally, 
many forensic serology assays are based on the detection of primary reactions and will be dis-
cussed in Chapters 12 through 17.

10.3.2 Secondary Reactions
The primary reaction between an antigen and an antibody is often followed by a secondary reac-
tion. The three types of secondary reactions are precipitation, agglutination, and complement 
fixation. The techniques that detect secondary reactions are usually less sensitive but easier to 
perform than primary reaction assays. The precipitation and agglutination reactions form the 
basis for many serologic assays performed in forensic laboratories. These reactions will be dis-
cussed in the following subsections in detail. The third type of reaction is called complement 
fixation. If an antigen is located on a cell surface, the binding of the antigen and the antibody 
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Figure 10.6 Avidity is a measure of the overall strength of the binding between antigens and anti-
bodies. (© Richard C. Li.)
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may activate the classical complement pathway and lead to cell lysis, also known as a complement 
fixation reaction. The detection of this type of reaction is not commonly used in forensic serology.

10.3.2.1 Precipitation
If a soluble antigen is mixed and incubated with its antibody, the antigen–antibody complexes 
can form cross-linked complexes at the optimal ratio of antigen-to-antibody concentration. The 
cross-linked complex is insoluble and eventually forms a precipitate that settles to the bottom of 
a test tube. Antibodies that produce such precipitation are also called precipitins.

This precipitation reaction can be characterized by examining the effect of varying the relative 
ratio of antigen and antibody. If an increasing amount of soluble antigen is mixed with a constant 
amount of antibody, the amount of precipitate formed can be plotted. A precipitin curve (Figure 10.8) 
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Figure 10.7 Primary reaction. Initial binding forms an antigen–antibody complex. (© Richard C. Li.)
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Figure 10.8 Precipitin curve. (© Richard C. Li.)
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illustrates the results observed when antigens and antibodies are mixed in various concentration 
ratios. The curve can be divided into three zones known as the prozone, the zone of equivalence, and 
the postzone.

10.3.2.1.1 Prozone
At this zone, the ratio of antigen–antibody concentration is low. In other words, the antibody 
is in excess. Each antigen molecule is rapidly saturated with antibody, thus preventing cross-
linking (Figure 10.9a). No precipitate is formed at the prozone stage.

10.3.2.1.2 Zone of Equivalence
As the concentrations of antigen increase, the amount of precipitate increases until it reaches 
a maximum. The amount of precipitation depends on the relative proportions of antigens and 
antibodies present. The maximum precipitation occurs in what is called the zone of equiva-
lence. In the zone of equivalence, the ratio of antibody to antigen concentration is optimal and 
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Figure 10.9 Antigen–antibody binding in (a) prozone, (b) zone of equivalence, and (c) postzone. 
(© Richard C. Li.)
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precipitation occurs as a result of forming cross-linked networks (Figure 10.9b). Precipitation 
assays are usually carried out under the condition of the zone of equivalence, forming a suffi-
cient quantity of precipitation to be detected.

10.3.2.1.3 Postzone
With the addition of more antigens, the ratio of antigen–antibody concentrations is high. In 
other words, the antigen is in excess. The amount of precipitate decreases and eventually dimin-
ishes. Each antibody molecule is saturated with antigen molecules (Figure 10.9c). Cross-linkage 
cannot form, and precipitation does not occur.

10.3.2.2 Agglutination
As discussed in the previous subsection, precipitation reactions involve soluble antigens. If the 
antigens are located on the surfaces of cells or carriers (carrier cells such as sheep erythrocytes, 
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Figure 10.10 Agglutination reaction: (a) antigens are mixed with antibodies, (b) an antigen–antibody 
complex is formed during initial binding, and (c) the lattice is formed. (© Richard C. Li.)
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bacteria, or latex particles), antibodies can bind to the surface antigens and can form cross-links 
among cells or carriers, causing them to aggregate. This aggregation is referred to as agglutina-
tion. In agglutination, a visible clumping can be observed as an indicator of the reaction of the 
antigen and the antibody. If the antigen is located on an erythrocyte, the agglutination reaction 
is designated hemagglutination. Agglutination is a two-step process that includes initial binding 
and lattice formation (Figure 10.10a).

10.3.2.2.1 Initial Binding
The first step of the reaction involves antigen–antibody binding at a single epitope on the cell 
surface (Figure 10.10b). This initial binding is rapid and reversible.

10.3.2.2.2 Lattice Formation
The second step involves the formation of a cross-linked network resulting in visible aggregates 
that constitute a lattice (Figure 10.10c). This involves an antibody binding to multiple epitopes 
because each antibody has two binding sites and antigens are multivalent. Lattice formation is 
a much slower process than the initial binding step. The cross-linking of cells requires physical 
contact. Additionally, an antibody must bind to epitopes on two different cells. The ability to 
cross-link cells depends on the nature of the antibody. Antibodies that produce such reactions 
are often called agglutinins.

Additionally, a complete antibody is capable of carrying out both primary and secondary 
interactions that result in agglutination. An antibody that can carry out initial binding but fails 
to form agglutination is called an incomplete antibody. This type of antibody is believed to have 
only one active antigen-binding site and is thus not capable of agglutination. It is potentially 
caused by the presence of steric obstruction due to the conformation of the incomplete antibody 
molecule, preventing the binding of antigens at the second binding site. However, other incom-
plete antibodies have two active sites but cannot bridge the distance between cells, thus failing 
to form lattices. Certain antibodies such as IgG are small and lack flexibility at the hinge region, 
and this may prevent agglutination. In contrast, the large IgM antibodies produce agglutination 
much more easily than IgG. Agglutination reactions have a wide variety of applications in the 
detection of antigens and antibodies. Such assays have high degrees of sensitivity and have been 
used for many years in forensic serology.
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11
Serology Techniques

Past, Current, and Future

11.1 Introduction to Forensic Serology
11.1.1 The Scope of Forensic Serology
Forensic serology is the component of forensic biology that deals with the examination and iden-
tification of biological evidence. In particular, it focuses on determining the presence and iden-
tification of various bodily fluids such as blood, semen, and saliva in a questioned sample.

Bodily fluid stains are commonly associated with violent criminal cases. For instance, the 
identification of blood evidence (Chapter 12) is often necessary for investigating cases involving 
homicide, aggravated assault, sexual assault, and burglary. Proving the presence of blood has 
probative value or may corroborate allegations of violent acts. This evidence can also be used 
for investigative purposes. For example, the forensic DNA analysis of evidence such as a victim’s 
blood on a suspect’s weapon can establish a link between a victim and a suspect. The identifica-
tion of semen (Chapter 14) and saliva (Chapter 15) is important for the investigation of a sexual 
assault case. For instance, a stain from a victim’s clothing would be processed with forensic 
DNA analysis in a sexual assault case so that the DNA profile of the stain could be compared 
with that of an alleged suspect. Matching DNA profiles prove that the suspect’s DNA was found 
on the victim’s clothing, establishing a link between the suspect and the victim. Additionally, 
the identification of a biological stain as a semen stain through forensic serology testing proves 
that semen was found on the clothing taken from the victim and that the suspect is the source 
of the DNA from the semen stain. This evidence can then be used in court to support allegations 
that a sexual act occurred. Likewise, the presence of a suspect’s saliva stains on a victim’s genital 
area may corroborate an alleged oral copulation. The identification of bodily fluids other than 
blood, semen, and saliva will be discussed in Chapters 16 and 17.

11.1.2 Class Characteristics and Individual Characteristics of Biological Evidence
The identification of an unknown fluid sample is based on a comparison of the class character-
istics (Section 3.2.1) of a sample with known standards of its class. Forensic identification typi-
cally involves bodily fluids, such as blood, semen, and saliva. If the presence of the bodily fluid 
is confirmed, the individual characteristics (Section 3.2.2) of the biological evidence are then 
determined to find out whether or not a bodily fluid sample has come from a particular individ-
ual. Today, this analysis can be achieved through forensic DNA analysis. The most commonly 
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utilized forensic DNA analysis is the short tandem repeat (STR) analysis used for human iden-
tification. Additionally, Y-chromosomal STR analysis is often utilized for the investigation of 
sexual assault crimes. Furthermore, mitochondrial DNA analysis is used for the identification 
of human remains. Therefore, establishing the probative value of a sample requires both the 
identification of its class characteristics and the individualization of its contributor. Therefore, 
the identification of bodily fluids cannot be replaced by forensic DNA analysis.

11.1.3 Presumptive and Confirmatory Assays
The identification of bodily fluids can be carried out using presumptive and confirmatory assays 
to identify the type of bodily fluid in question. The advantages of presumptive assays are that 
these assays are sensitive, rapid, and simple. A positive reaction of a presumptive assay indicates 
the possibility of the presence of the bodily fluid in question. However, presumptive assays are 
not very specific. Therefore, they should not be considered conclusive for the presence of a type 
of bodily fluid. In contrast, a negative assay indicates that the questioned bodily fluid is absent. 
Thus, presumptive assays can be used as a screening method and for narrowing down bodily 
fluid stains prior to other types of analyses, such as forensic DNA testing. Moreover, these assays 
can be used as a search method to locate bodily fluid stains at the crime scene. Additional assays, 
such as confirmatory assays, should be conducted afterward if necessary.

Confirmatory assays are more specific for the bodily fluid in question. These assays are uti-
lized to identify bodily fluids with higher certainty than presumptive assays. For example, 
bloodstains are commonly associated with criminal investigations. A reddish-brown stain that 
has been identified through visual examination is usually tested by using presumptive assays. If 
the result of the presumptive assay on the alleged bloodstain is positive, the stain is then further 
analyzed by forensic DNA analysis. This approach indicates the presence of blood. Confirmatory 
assays are performed when a sample has to be identified as blood (Figure 11.1). Additionally, the 
human or animal origin of blood evidence can be determined if necessary and the techniques to 
do so will be discussed in Chapter 13.

11.1.4 Primary and Secondary Binding Assays
Traditionally, the detection and measurement of the antigen–antibody binding reactions serve 
as the bases of forensic serology. These assays fall into two categories: primary and second-
ary binding assays. Recall that the primary binding assays involve the initial binding between 
a single epitope of an antigen and a single binding site of an antibody (see Section 10.3.1). 
Therefore, they are very sensitive. Although the secondary binding assays are less sensitive 
than the primary binding assays, they are easier to perform than primary assays. The second-
ary assays consist of precipitation-based and agglutination-based assays. Precipitation-based 
assays have been used for species identification. Agglutination-based assays are more sensitive 
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Figure 11.1 An example of work flow for processing blood samples. (© Richard C. Li.)
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than precipitation-based assays. Agglutination-based assays, which detect antigens located on 
the surface of cells or carriers, are normally applied to blood group typing. Recently, emerging 
techniques such as RNA, proteomic, and DNA methylation assays, and fluorescence as well as 
Raman spectroscopy can potentially be used for the identification of bodily fluids.

11.2 Primary Binding Assays
11.2.1 Enzyme-Linked Immunosorbent Assay (ELISA)
An enzyme-linked immunosorbent assay (ELISA) is an immunoenzyme assay that can be used 
to detect and measure the antibody or antigen in question. The most common ELISA that is 
used in forensic serology is the antibody-sandwich ELISA (Figure 11.2). It is utilized to detect 
the prostate-specific antigen (PSA) to identify seminal stains and amylase for the identification 
of saliva (Chapters 13 and 14).

An antibody (usually monoclonal) coating is formed by nonspecific adsorption onto a solid 
phase such as the wells of a polystyrene plate. A sample containing the antigen to be tested is 
then added and binds to the solid-phase antibody. Subsequently, a second antibody is added to 
form an antibody–antigen–antibody sandwich complex. The second antibody binds to different 
epitopes of the antigen. Next, an enzyme-labeled antiglobulin (Chapter 10) is added to bind the 
sandwich. Subsequently, the excess enzyme-labeled antiglobulin is removed by washing and the 
bound antiglobulin can be detected.

A number of enzymes such as alkaline phosphatase and horseradish peroxidase have been 
used as reporting enzymes (Chapter 9) to label the antiglobulin for ELISA. The enzyme catalyzes 
the substrate and produces colorimetric or fluorometric signals. The intensity of the signals can 
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Figure 11.2 ELISA assay. (a) Sample containing Ag (antigen) is applied to a sample well where 
Ab (antibody) is immobilized. (b) Ag binds to an immobilized Ab to form an Ag–Ab complex. (c) A 
second Ab to a different epitope is added to form an Ab–Ag–Ab sandwich. (d) Labeled antiglobu-
lin binds to the sandwich. The bound antiglobulin can be detected by various reporting schemes. 
(© Richard C. Li.)
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be detected spectrophotometrically and is proportional to the amount of bound antigen. The 
amount of antigen can be quantified by comparing the standard with known concentrations. 
Recall that antiglobulin can recognize an epitope that is common to all isotypes within an anti-
body class (Section 10.1.2.3); the enzyme-labeled antiglobulin is a universal reagent regardless 
of the antibody used, as long as they are of the same class.

Alternatively, antibodies in a sample can also be detected and may be quantified by an ELISA 
system in which the antigen is bound to a solid phase instead of the antibody. After an antibody 
in a sample binds to the solid-phase antigen, an enzyme-labeled antiglobulin is added to bind to 
the bound antibody. The bound antiglobulin can be detected and measured by the addition of an 
enzyme substrate. The enzymatic catalytic reaction is similar to the antibody sandwich ELISA 
procedure previously described.

11.2.2 Immunochromatographic Assays
Figure 11.3 depicts a test using an immunochromatographic membrane device. A dye-labeled 
monoclonal antibody is contained in a sample well and a polyclonal antibody for the antigen (or 
a second monoclonal antibody to a different epitope of the antigen) is immobilized onto a test 
zone of a nitrocellulose membrane. An antiglobulin that recognizes the antibody is immobi-
lized onto a control zone.

The assay is carried out by loading a sample into the sample well. The antigen in the sample 
binds to the dye-labeled antibody already in the sample well to form an antigen–antibody com-
plex. The complex then diffuses across the nitrocellulose membrane until it reaches the test 
zone. The antibody immobilized at the test zone traps the antigen–antibody complex to form 
an antibody–antigen–antibody sandwich. The presence of the antigen in the sample results in a 
colored vertical line at the test zone. (Figure 11.4)

The immunochromatographic device also utilizes a control zone to ensure that the device 
works properly and that the sample has diffused completely along the test strip. Unbound 
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Figure 11.3 Immunochromatographic assay. (a) Sample containing Ag (antigen) is loaded in a 
sample well. (b) Ag binds to a labeled Ab (antibody) to form a labeled Ab–Ag complex. (c) At the 
test zone, the labeled Ab–Ag complex binds to an immobilized Ab to form a labeled Ab–Ag–Ab 
sandwich. (d) At the control zone, a labeled Ab binds to an immobilized antiglobulin and is captured 
at the control zone. (© Richard C. Li.)
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monoclonal antibodies diffuse across the membrane until they reach the control zone where 
they are trapped by the immobilized antiglobulin. This antibody–antiglobulin complex at the 
control zone also results in a colored vertical line (Figure 11.4). The test is considered valid only 
if the line in the control zone is observed. The presence of an antigen results in a line at both the 
test zone and the control zone, while the absence of an antigen results in a line in the control 
zone only (Figure  11.4). This method is rapid and simple and thus can be used as a screen-
ing test in laboratories and as a field test at crime scenes to identify semen, saliva, and species 
(Table 11.1).

However, a false-negative result may be obtained if a sample contains a very high concentration of 
an antigen (Figure 11.5). Under this condition, the dye-labeled antibody will become saturated with 
the antigen to form antigen–antibody complexes. The unbound antigen will diffuse along with the 

Sample well Test zoneControl zone

Negative result

Positive result

Figure 11.4 Immunochromatographic device. Positive and negative results are shown. (© Richard C. Li.)

Table 11.1 Common Immunochromatographic Assays for Forensic Applications

Assay Antigen
Labeled 
Antibody

Immobilized 
Antibody

Forensic 
Application

ABAcard® 
HemaTrace® 
(Abacus 
Diagnostics)

Hemoglobin (Hb) Monoclonal 
antihuman 
Hb antibody

Polyclonal 
antihuman Hb 
antibody

Blood and 
species 
identification

RSID™-Blood 
(Independent 
Forensics)

Glycophorin A 
(GPA)

Monoclonal 
antihuman 
GPA antibody

Monoclonal 
antihuman 
GPA antibody

Blood and 
species 
identification

RSID™-Saliva 
(Independent 
Forensics)

Human salivary 
α-amylase 
(HAS)

Monoclonal 
antihuman 
HAS antibody

Monoclonal 
antihuman 
HAS antibodya

Saliva 
identification

One-Step ABAcard 
PSA® (Abacus 
Diagnostics)

Prostate-specific 
antigen (PSA)

Monoclonal 
antihuman 
PSA antibody

Polyclonal 
antihuman 
PSA antibody

Semen 
identification

RSID™-Semen 
(Independent 
Forensics)

Semenogelin 
(Sg)

Monoclonal 
antihuman 
Sg antibody

Monoclonal 
antihuman Sg 
antibodya

Semen 
identification

a The epitope recognized by the immobilized antibody is different from that of the labeled 
antibody.
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antigen–antibody complex toward the test zone. At the test zone, the unbound antigen will compete 
with the antigen–antibody complexes for the antibody immobilized at the test zone. Since the anti-
gen is in excess, the unbound antigen binds to the immobilized antibody, preventing the formation 
of the antibody–antigen–antibody sandwich. The resulting reading appears as a negative result. This 
artifact is known as the high-dose hook effect. To prevent the high-dose hook effect, a smaller volume 
of sample can be applied, or the sample can be diluted to reduce the amount of antigen applied.

11.3 Secondary Binding Assays
11.3.1 Precipitation-Based Assays
These techniques are based on the precipitation reaction and are used primarily for species iden-
tification in forensic laboratories.

11.3.1.1 Immunodiffusion
Immunodiffusion is a passive method in which an antigen or an antibody or both are allowed to 
diffuse and therefore a gradient, from low to high concentration, is established for an antigen or 
an antibody or both. As a result, precipitation occurs due to the interaction between an antigen 
and an antibody. The assay can be carried out in a liquid or a semisolid medium such as agarose 
gel. The semisolid medium can stabilize the diffusion process and reduce interference such as 
convection, which is the movement of molecules within liquids. The two types are single immu-
nodiffusion and double immunodiffusion.

11.3.1.1.1 Single Immunodiffusion
A concentration gradient is established for either an antigen or an antibody. One serology tech-
nique based on this principle is radial immunodiffusion—a single diffusion method in which 
a concentration gradient is established for an antigen. The antibody is uniformly distributed in 
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Figure 11.5 High-dose hook effect of immunochromatographic assay. (a) Ag (antigen) in sample is 
loaded in the sample well. (b) Ag binds to a labeled Ab (antibody) to form a labeled Ag–Ab complex. 
(c) At the test zone, free Ag binds to an immobilized Ab to form an unlabeled Ab–Ag complex and 
prevents the formation of a labeled Ab–Ag–Ab sandwich. (d) At the control zone, a labeled Ab binds 
to immobilized antiglobulin and is captured at the control zone. (© Richard C. Li.)
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the gel matrix (Figure 11.6). The antigen is loaded into a sample well and allowed to diffuse from 
the well into the gel until a precipitation reaction occurs. The precipitate ring around the well is 
observed; the area within the ring of precipitate is proportional to the amount of antigen loaded 
in the well. Standards using known concentrations of antigen can be included in the same assay 
along with the samples, and a standard curve can be plotted. The amounts of antigen in samples 
can then be quantified by comparing the results with the standard curve.

11.3.1.1.2 Double Immunodiffusion
The second type of assay is double diffusion in which a concentration gradient is established 
for both an antigen and an antibody. The most common examples are the ring assay and the 
Ouchterlony assay. The ring assay can be performed in a test tube or capillary tube (Figure 11.7). 
An antiserum, a denser phase, is placed in a small tube. An antigen solution is carefully layered 
on top of an antibody solution without mixing. Both the antigen and the antibody will diffuse 
toward each other. In a positive reaction, a ring of precipitate can be observed at the interface of 
the two solutions. A negative reaction is indicated by a lack of precipitation. The assay requires 
positive and negative controls along with questioned samples.

Amount of antigen(b)(a)

Ag

Ab-containing gel

A
re

a

Figure 11.6 Radial immunodiffusion assay. (a) Immunodiffusion of antigens from a well into an 
antibody-containing gel. (b) Standard curve based on results of standards with known amounts of 
antigens. (© Richard C. Li.)
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Figure 11.7 Ring assay. (© Richard C. Li.)
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The Ouchterlony assay is named after the Swedish immunologist, Örjan Ouchterlony, who 
developed it. The assay can be performed in an agarose gel supported by a glass slide or polyes-
ter film (Figure 11.8). Wells are created by punching holes in the gel layer at desired locations. 
Often, a pattern with six wells surrounding a center well is used. The antibody is loaded in the 
central well while the questioned samples and the controls are loaded in the surrounding wells. 
The double diffusion of the antigen and the antibody from the wells is allowed to occur during 
incubation. If the reaction is positive, a precipitate line between wells can be observed at the end 
of incubation. The precipitate can be stained, enhancing visibility to aid observation. A single 
assay can compare more than one antigen to determine whether the antigens in question react 
the same way or differently with the antibody (see Chapter 7). This method is sometimes used to 
determine whether samples have come from the same or different origins.

11.3.1.2 Immunoelectrophoretic Methods
Diffusion techniques can be combined with electrophoresis to enhance test results. Electro-
phoresis separates molecules according to the differences in their electrophoretic mobility.

11.3.1.2.1 Immunoelectrophoresis
Immunoelectrophoresis (IEP) is a two-step procedure that can analyze a wide range of antigens. 
This technique uses electrophoresis to separate the antigen mixture prior to immunodiffusion 
(Figure 11.9). In the first step, the antigens in a sample are separated using agarose gel electrophoresis. 
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Figure 11.9 IEP assay. (a) Electrophoresis of antigens is carried out. (b) Various antigens are sepa-
rated after electrophoresis. (c) Trough is cut. (d) Antibody is applied to the trough allowing diffusion 
to occur and forming precipitate lines. +, anode; −, cathode. (© Richard C. Li.)
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Figure 11.8 Ouchterlony assay. (© Richard C. Li.)
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Then, a trough is cut in the gel parallel to the array of antigens separated by electrophoresis. In the 
second step, an antibody is loaded in the trough and the gel is incubated for double diffusion. An 
arc-shaped precipitate line can be observed for a positive reaction. Multiple precipitate lines can 
occur if more than one antigen reacts with the antibody. The shapes, intensities, and locations of the 
precipitate lines of a known control and a questioned sample can be compared.

11.3.1.2.2 Crossed Immunoelectrophoresis
Crossed immunoelectrophoresis (CRIE), also known as two-dimensional IEP, is a modifica-
tion of IEP. The first step utilizes electrophoresis to separate antigens contained in a sample 
(Figure 11.10). A strip of gel containing separated antigens is cut for the second round of elec-
trophoresis. The gel including the gel strip is turned at a 90° angle and is further separated by a 
second-dimension electrophoresis. This drives the antigens from the gel strip into an agarose gel 
that contains uniformly distributed antibodies. Following the second-dimension electrophoresis, 
an arc-shaped precipitate line is formed. The area of the arc can be measured, and a sample can 
be identified by comparison with a known standard. This technique is more sensitive than IEP.

11.3.1.2.3 Rocket Immunoelectrophoresis
An antibody-containing agarose gel is used. The antigen is loaded into the well (Figure 11.11). 
Electrophoresis then drives the antigen from the well into the agarose gel. In a positive reaction, 
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Figure 11.10 CRIE assay. (a) Electrophoresis of antigens is carried out. (b) Various antigens are 
separated after electrophoresis. A strip of gel containing separated antigens is excised and then 
used for second-dimension electrophoresis. (c) As shown, second-dimension electrophoresis is car-
ried out to drive the antigens into an antibody-containing gel; (d) arc-shaped precipitate lines are 
formed as a result. (© Richard C. Li.)
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Figure  11.11 Rocket immunoelectrophoresis assay. Antigens are driven from the wells into an 
antibody-containing gel forming precipitate lines. (© Richard C. Li.)
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a rocket-shaped precipitate line can be observed. The height of the rocket is in proportion to the 
amount of antigen in the sample. Quantitation can be achieved by comparing standards and the 
sample in the same gel.

11.3.1.2.4 Crossed-Over Immunoelectrophoresis
This technique is also known as counterimmunoelectrophoresis (CIE). Two arrays of opposing 
wells are created by punching holes in the agarose gel (Figure 11.12). The antibody and samples 
are loaded in opposing wells arranged by pairs. Electrophoresis is used to drive the antigen and 
the antibody toward each other. The wells containing the antibody should be proximal to the 
anode and the wells containing the samples should be proximal to the cathode. During gel elec-
trophoresis, the antigen, which is usually negatively charged, migrates toward the anode. The 
antibody migrates in the opposite direction as a result of electroendosmosis—a phenomenon in 
which the movement of molecules is caused by fluid flow. A precipitate line is formed between 
the opposing wells if the antigen reacts with its specific antibody.

11.3.2 Agglutination-Based Assays
Agglutination reactions can be used as forensic serological assays such as for blood group typing 
(Chapter 18) and menstrual blood identification (Chapter 16). Agglutination assays are qualita-
tive, indicating the absence or presence of antigens or antibodies. Semiquantitative results can 
be obtained by titration (diluting the antigen or antibody). Many types of agglutination reac-
tions are available; only those used in forensic serology are discussed next.

Direct agglutination assays involve reactions in which an antibody interacts with antigens 
originally located on cell surfaces. In a hemagglutination reaction (Figure 11.13a), an antibody 
binds to the antigens located on erythrocytes. This method is used for the identification of blood 
types, for example, the testing of erythrocytes for ABO blood group typing. The assay can be 
carried out on a glass slide and the agglutination, as indicated by forming cell clumps, can be 
observed under a microscope (Chapter 18). The assay can also be carried out in a test tube. In 
a positive reaction, agglutinated cells are formed on the bottom of the test tube. Test tubes can 
also be centrifuged and then swirled to determine whether the cell clumps can be resuspended. 
Agglutinated cells cannot be resuspended. In a negative reaction, unagglutinated cells can be 
resuspended.

In agglutination inhibition assays, the presence of an antigen in question is indirectly detected 
(Figure 11.13b). If a known antigen is added to a mixture consisting of antigen-containing cells 
and antibodies, the added antigen will compete with the antigen located on the cell surfaces for 
antibody binding and inhibit the agglutination reaction. Another indirect agglutination assay 
is the absorption–elution assay (Chapter 18), which can be used for ABO blood group typing.

Passive agglutination assays are different from direct agglutination assays, in which the 
antigen is coated on the surface of carrier cells such as tannic acid–treated sheep erythrocytes. 
Tannic acid is considered to be a fixative. Treating with tannic acid can stabilize the carrier cells 
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Figure 11.12 Crossed-over immunoelectrophoresis assay. (© Richard C. Li.)
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Figure  11.13 Agglutination-based assays. (a) Direct agglutination assay and (b) agglutination 
inhibition assay. Hemagglutination reactions are shown; antigens are located on erythrocytes. 
(c) Passive agglutination assay. (© Richard C. Li.)
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for a subsequent coating of antigens. The carrier cells are then incubated with samples contain-
ing antigens. A coating of antigens can be formed on the surfaces of carriers. Such antigen-
coated carrier cells can then be agglutinated using an antibody that is specific to the absorbed 
antigens (Figure 11.13c).

11.4 DNA Methylation Assays for Bodily Fluid Identification
In the eukaryotic genome, methylation occurs at the cytosine residues commonly in the CpG 
dinucleotide sequences of both DNA strands. The “p” in CpG refers to the phosphodiester bond 
between cytosine and guanine. Cytosine methylation is carried out in vivo by methyltransferase 
(DNMT). DNMT catalyzes the transfer of a methyl group (CH3) from S-adenosylmethionine 
(SAM) to the C5 position of cytosine (Figure  11.14). As a result, cytosine is converted to 
5-methylcytosine. Cytosine methylation is observed throughout the eukaryotic genomes in 
both the coding and intergenic regions located between genes. However, cytosine methylation is 
rare at CpG islands, which are stretches of DNA containing a high frequency of CpG dinucleo-
tides in the regulatory regions of genes (Figure 11.15). It is implicated that cytosine methylation 
alters the chromatin structure and causes chromatin condensation. As a result, gene expression 
is usually inhibited by cytosine methylation.

Genomic loci, known as tissue-specific differentially methylated regions (TDMRs), have been 
identified. TDMRs show differential DNA methylation patterns between different tissues. For 
example, semen-specific TDMRs are consistently hypomethylated in spermatozoa, which can 
be used to identify semen samples. Other TDMRs display varying degrees of methylation in 
different types of bodily fluids. This suggests that differential DNA methylation assays may be 
potentially useful for bodily fluid identification.

The detection of DNA methylation can be carried out by a number of methods. Methylation-
sensitive restriction enzyme digestion polymerase chain reaction (MSRE-PCR) can be used for the 
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Figure 11.14 Eukaryotic cytosine methylation catalyzed by methyltransferase.
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Figure 11.15 Methylation at the cytosine residues in CpG dinucleotide sequences. Note that the 
CpG dinucleotide sequences are usually unmethylated in the promoter regions. Black circle: methyl-
ated. Clear circle: unmethylated. Gray circle: partial methylated. (© Richard C. Li.)
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rapid detection of DNA methylation. This method utilizes the methylation-sensitive restriction 
enzyme (MSRE). MSREs cleave DNA at unmethylated restriction sites, but they are not able to 
cleave once a cytosine residue is methylated. Thus, the methylated DNA remains intact. After 
PCR amplification, the methylated DNA is amplified and the amplicon is detected. In contrast, 
the unmethylated DNA is cleaved by the MSRE and cannot be amplified (Figure 11.16). Bisulfite 
sequencing is another widely used method. The genomic DNA is treated with sodium bisul-
fite, which catalyzes the hydrolytic deamination of unmethylated cytosines (Figure 11.17). As a 
result, unmethylated cytosines are converted to uracils, while methylated cytosines are resistant 
to conversion and remain unchanged. Next, uracils are replaced by thymines during PCR. After 
sequencing, the methylation sites can be deduced at a single-nucleotide resolution by comparing 
them with the reference sequence (Figure 11.18). Methyl-DNA immunoprecipitation (MeDIP) is 
a useful method for isolating methylated DNA. In this method, DNA is first sheared into frag-
ments. The fragmented DNA is then treated with an antimethylcytosine antibody that binds to 
methylated cytosines. Methylated DNA fragments can then be isolated by immunoprecipitation 
for further analysis (Figure 11.19).
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Figure 11.16 Methylation-sensitive restriction enzyme digestion PCR (MSRE-PCR) for the detec-
tion of DNA methylation. This method utilizes the methylation-sensitive restriction enzyme (MSRE) 
such as HhaI. HhaI cleaves DNA at the unmethylated sequence GCGC but is not able to cleave 
once a cytosine residue is methylated (GCmGC). The HhaI-treated DNA is then PCR amplified. The 
HhaI uncleaved DNA results in an amplicon, indicating the presence of a methylated cytosine in the 
sequence. The HhaI cleaved DNA cannot be amplified, indicating the absence of methylated cyto-
sine in the sequence. Me, 5-methylcytosine site; red arrow, PCR primers. (Adapted from Frumkin, 
D. et al., Forensic Sci Int Genet, 5, 517–524, 2011.)
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11.5 Forensic Applications of RNA-Based Assays and RNA Profiling
11.5.1 Messenger RNA-Based Assays
mRNA-based assays have been developed to identify bodily fluids for forensic investigation. In 
forensic pathological investigation, they can potentially be used for wound age estimation and 
the age of biological stains. The assays are based on the expression of certain genes in certain cell 
or tissue types. Candidate tissue-specific genes that may be useful for the identification of bodily 
fluids have been identified. Thus, the techniques that are used in the identification of bodily fluids 
are based on the detection of specific types of mRNA that are expressed exclusively in certain 
cells. The tissue-specific genes that are utilized for bodily fluid identification are summarized in 
Table 11.2. Additionally, reference genes that are constitutively expressed housekeeping genes are 
utilized as internal controls. The amount of mRNA can be assessed by normalizing the target 
gene to the expression level of the reference genes. Compared with conventional assays that are 
used for bodily fluid identification, the mRNA-based assay has higher specificity and is ame-
nable to automation. However, one limitation is that the mRNA is unstable due to degradation by 
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Figure 11.18 Schematic illustration of bisulfite sequencing of cytosine methylation. In a deamina-
tion reaction, unmethylated cytosines are converted to uracil. PCR and DNA sequencing are then car-
ried out. The retention of C indicates that the site was methylated; the conversion of C to T indicates 
that the site was unmethylated in the DNA sample. Me, 5-methylcytosines site. (© Richard C. Li)
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Figure 11.19 Methylated DNA immunoprecipitation (MeDIP) for the detection of methylated DNA. 
Genomic DNA is randomly and mechanically sheared into fragments. Fragments are then denatured 
to single-stranded DNA. The fragments containing the methylated region can be immunoprecipitated 
using an antibody that specifically recognizes 5-methylcytosine. The methylated DNA sequence in 
the immunoprecipitated fragments can then be determined by DNA sequencing and methylation 
analysis. Me, 5-methylcytosine site; 5mC Ab, 5-methylcytosine antibody. (© Richard C. Li.)



11.5 Forensic Applications of RNA-Based Assays and RNA Profiling

213

Table 11.2 Representative Markers of mRNA-Based Assays for 
Bodily Fluid Identification

Bodily Fluid Gene Symbol Description

Blood ALAS2 Aminolevulinatesynthase 2

AMICA1 Adhesion molecule, interacts with 
CXADR antigen 1

ANK1 Ankyrin1

CD3G CD3 gammamolecule

CD93 CD93 molecule

HBA1 Alpha 1 hemoglobin

HBB Beta hemoglobin

PBGD Porphobilinogen deaminase

SPTB Beta spectrin

Saliva HTN3 Histatin 3

MUC7 Mucin 7

STATH Statherin

Semen KLK3 Kallikrein 3 (prostate-specific 
antigen)

PRM1 Protamine 1

PRM2 Protamine 2

SEMG1 Semenogelin 1

TGM4 Transglutaminase 4

Vaginal secretions CYP2B7P1 Cytochrome P450, family 2, 
subfamily B, polypeptide 7 
pseudogene 1

DKK4 Dickkopf homolog 4

FUT6 Fucosyltransferase 6

HBD1 Beta defensin 1

IL19 Interleukin 19

MUC4 Mucin 4

MYOZ1 Myozenin 1

SFTA2 Surfactant associated 2

Menstrual blood MMP7 Matrix metalloproteinase 7

MMP11 Matrix metalloproteinase 11

Skin CDSN Corneodesmosin

LOR Loricrin

(continued)
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endogenous ribonucleases. Additionally, bodily fluid stains collected from crime scenes are often 
exposed to ultraviolet (UV) light, moisture, and high temperature, which can promote mRNA 
degradation. Nevertheless, the successful detection of mRNA from aged samples is possible.

11.5.2 MicroRNA-Based Assays
The biological function of microRNAs (miRNAs) is to regulate gene expression. The mature 
miRNA strand associated with the RNA-induced silencing complex (RISC) binds to its tar-
get mRNA. In animal cells, the mature miRNA forms a base pairing with its complementary 
sequence of the miRNA responsive element (MRE) within the 3′ untranslated regions (3′UTRs) of 
the target mRNA (Figure 11.20). A single miRNA can bind different mRNA transcripts encoded 
by multiple genes. Animal miRNAs usually form a base pairing with their target mRNAs through 
partial complementary sequences, which lead to translation repression to inhibit protein synthe-
sis. If the base pairing is exactly complementary to its target mRNA sequence, then the cleavage 
and the degradation of the target mRNA occurs. As a result, the synthesis of the protein encoded 
by the mRNA is reduced. Thus, miRNAs play important roles in cellular function.

miRNAs have potential applications in forensic identification. Recent studies have revealed 
that miRNAs can be detected from various bodily fluids such as blood, saliva, semen, vaginal 
secretions, and menstrual blood. The type of miRNA expressed is not exclusively tissue- or 
cell-type specific. However, the expression patterns of specific miRNAs are unique for various 
bodily fluids. Thus, a bodily fluid in question can potentially be identified using multiple dif-
ferentially expressed miRNAs as markers (Table 11.3). miRNA markers for bodily fluid iden-
tification have their advantages compared with those of mRNA. Mature miRNAs are much 

Table 11.2 (Continued) Representative Markers of mRNA-Based 
Assays for Bodily Fluid Identification

Bodily Fluid Gene Symbol Description

Reference gene 18S rRNA 18S ribosomal RNA

ACTB Beta actin

G6PDH Hexose-6-phosphate 
dehydrogenase

RPS15 Ribosomal protein S15

Sources: Adapted from Bauer, M. and Patzelt, D., J Forensic Sci, 47, 1278–
1282, 2002; Hanson, E.K. and Ballantyne, J., Sci Justice, 53, 
14–22, 2013; Lindenbergh, A., Maaskant, P., and Sijen, 
T.,  Forensic Sci Int Genet, 7, 159–166, 2013; Nussbaumer, 
C., Gharehbaghi-Schnell, E., and Korschineck, I., Forensic Sci Int, 
157, 181–186, 2006.
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Figure 11.20 Schematic illustration of the roles of miRNA in translational inhibition. In animal 
cells, miRNAs bind to 3′UTR of their target mRNA with partially complementary Watson–Crick 
base pairing. As a result, the binding of miRNA to the target mRNA inhibits translation of the target 
mRNA. Eukaryotic 40S and 60S ribosomal subunits are shown. (© Richard C. Li.)
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smaller, approximately 21–23 nucleotides in length, than mRNA. As a result, miRNAs are less 
susceptible to degradation and more stable than mRNAs. Additionally, the sensitivity of the 
miRNA-based method is much higher than that of the mRNA-based methods.

11.6  Proteomic Approaches Using Mass Spectrometry 
for Bodily Fluid Identification

The forensic application of proteomic approaches is to identify biomarker proteins derived from 
bodily fluids to determine the type of bodily fluid in question for forensic investigations. Mass 
spectrometry (MS) is a highly sensitive and rapid technique for protein identification from com-
plex biological samples.

11.6.1 Mass Spectrometric Instrumentation for Protein Analysis
A mass spectrometer is an analytical technique to identify a molecule by measuring the ratio of 
the mass (m) to the charge (z) of a charged molecule (Figure 11.21). A typical mass spectrometer 
instrument analyzes ionized molecules while in its gas phase. A mass spectrometer consists 
of an ion source that converts analytes into gaseous phase ions, through a process known as 
ionization, by gaining a positive or a negative charge from a neutral species. The ions are then 
introduced into the mass analyzer of a mass spectrometer, where ions are accelerated under 
electric fields and separated based on their m/z ratio. The separated ions are detected by an ion 
detector that records the number of ions at each m/z value. The result of molecular ionization, 

Table 11.3 Differentially Expressed miRNA Markers for 
Bodily Fluid Identification

Biological Fluid miRNA Set

Blood miR16; miR451

miR16; miR486

miR20a; miR106a; miR144; miR185

miR126; miR150; miR451

Semen miR10b; miR135b

miR10a; miR135a; miR943; miR507; 
miR891a

Saliva miR205; miR658

miR200c; miR203; miR205

Vaginal secretions miR124a; miR372

Menstrual blood miR214

miR412; miR451

Reference gene RNU6-2 (U6 small nuclear 2 RNA)

Sources: Adapted from Courts, C. and Madea, B., J Forensic 
Sci,  56, 1464–1470, 2011; Hanson, E.K., Lubenow, 
H., and Ballantyne, J., Anal Biochem, 387, 303–314, 
2009; Wang, Z. et al., Forensic Sci Int Genet, 7, 
116–123, 2013; Zubakov, D. et al., Int J Legal Med, 
124, 217–226, 2010.



Forensic Biology, Second Edition

216

ion separation, and ion detection is a spectrum that can be used to determine the mass (or 
molecular weight) and potentially the structure of the molecule.

Furthermore, biomarker proteins can be identified by peptide sequencing using the tandem 
mass spectrometry (MS/MS) mode of operation in which a mass spectrometer uses two or more 
mass analyzers. After an initial mass analysis, individual peptide ions in the mass spectrum can 
be selected. The selected ions are known as precursor ions. A precursor ion is then subjected to 
a second round of fragmentation through collision and is broken into smaller ions known as 
product ions. The resulting product ions are further analyzed by MS. Thus, the corresponding 
protein can be identified through searching a protein database, based on the mass of a specific 
peptide obtained.

11.6.2 Analysis Strategies for Protein Identification
To date, various MS-based protein identification strategies have been developed, which can be 
divided into two categories: “top-down” and “bottom-up” strategies (Figure 11.22). In the top-
down strategy, intact proteins in a complex mixture are fractionated and separated into less 
complex protein mixtures or single proteins. Intact proteins are then analyzed using MS. A liq-
uid chromatography–mass spectrometry (LC–MS) system can be used for such an application. 
The advantage of this approach is that an entire protein is analyzed for identification purposes. 
However, the throughput and efficiency of this approach is still a major challenge for large-scale 
sample analysis in forensic applications.

The bottom-up strategy is commonly used for high-throughput analysis of small peptides 
derived from highly complex samples. Current MS usually cannot resolve the mass measure-
ment of large proteins; rather, MS is ideal for the analysis of small peptides. One approach is 
the sort-then-break approach in which proteins in a complex mixture are first isolated and then 
enzymatically cleaved. The target proteins are isolated from their complex biological source 
using 1-D or 2-D gel electrophoresis (Chapter 18). The isolated proteins are then enzymatically 
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Figure 11.21 Diagram of tandem mass spectrometry. For the initial mass analysis of thermolabile 
analytes including peptides and proteins, soft ionization techniques such as matrix-assisted laser 
desorption ionization (MALDI) and electrospray ionization (ESI) can be used to produce original 
ions. MALDI utilizes a laser beam to trigger ionization and facilitate the vaporization of the analyte. 
In the ESI method, a fine mist of droplets is formed in the presence of a high electric field, produc-
ing charged ions. In the first round of mass analysis, ions are separated based on their m/z ratio. 
A particular ion, called a precursor ion, is then selected for fragmentation, generating product ions. 
The fragmentation can be carried out using collision techniques such as collision-induced dissocia-
tion (CID) by multiple collisions with rare gas atoms. Additionally, a new fragmentation technique, 
electron-capture dissociation (ECD), can be used in which the fragmentation is induced through the 
capture of a thermal electron by a protonated peptide cation. The product ions are analyzed by the 
second round of mass analysis and detected by an ion detector. MS, mass analyzer. (© Richard C. Li.)
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cleaved into small peptides, approximately 15 amino acids in length, using proteases such as 
trypsin. These peptides are then analyzed by peptide sequencing using tandem MS to identify 
the target protein.

Break-then-sort, also known as the shotgun approach, is another approach of the bottom-up 
strategy. In this approach, proteins are cleaved first and the resulting peptide mixture is then 
separated by LC and analyzed by tandem MS (usually coupled to the LC). In a complex mixture, 
a peptide mass measurement alone is not sufficient for the identification of a target protein. 
Database searches are carried out utilizing software that compares the observed MS peptide 
spectra against all candidate spectra of the proteins that are present in a protein sequence (or 
translated from genomic DNA sequences) database for possible matches. Thus, a biomarker pro-
tein can be identified.

11.7 Microbial DNA Analysis for Bodily Fluid Identification
Human bodies harbor a large number of microbes. It is estimated that there are over 10 times 
more microbial cells than human cells in and on the human body, in the nose, mouth, throat, 
intestine, vagina, and skin. This microbial community is referred to as the human microbiota. 
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Figure 11.22 Top-down and bottom-up strategies for MS-based protein identification. LC, liquid 
chromatography; MS/MS, tandem mass spectrometry. (© Richard C. Li.)



Forensic Biology, Second Edition

218

It is known that the microbiota has an important influence on human health. A decade ago, the 
concept of the microbiome was proposed by Nobel laureate Joshua Lederberg to identify and 
characterize the microbiota, their genomes, and their environmental interactions in a defined 
community. Traditionally, the studies of microbial genomes rely on cultivated individual spe-
cies. The disadvantage of cultivation-based methods, however, is that large numbers of micro-
bial species cannot be successfully isolated because many microbial species require specific 
growth conditions. Based on the advances in DNA sequencing technologies, a new approach, 
known as metagenomics, has been developed. Instead of studying the genome of an individual 
cultivated microbial species, metagenomics allows the study of the microbial genome of com-
plete microbial communities harvested directly from natural environments. Metagenomics has 
been a powerful tool to analyze the human microbiome. Recently, human microbiota have been 
surveyed, revealing that microbial diversity is greatest in the teeth and the intestines, intermedi-
ate on the skin and the inside surface of the cheek, and lowest in the vagina (Table 11.4). More 
interestingly, each habitat is characterized by a small number of highly predominant bacterial 
taxa. The predominant taxa of each habitat can potentially be utilized for the forensic analysis 
of biological evidence. Bodily fluids identification is an important task in the forensic analysis of 
biological evidence. The detection of predominant taxa of bacteria can aid in the forensic iden-
tification of a particular type of bodily fluid (Table 11.4).

Table 11.4 Representative Microbiota that are Potentially Can Be Used for Forensic 
Identification

Body Habitats

Estimated 
Number of 
Microbial 
Species

Predominent 
Taxa

Potential 
Forensic 

Applications
DNA 

Marker
Further 
Reading

Cheek 800 Streptococcus 
spp.

Saliva 
identification

gtf Nakanishi 
et al. 
(2011)

Expirated 
blood

gtf Donaldson 
et al. 
(2010)

16S 
rRNA

Power et al. 
(2010)

Vagina 300 Lactobacillus 
spp.

Vaginal 
secretion 
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The detection of bacteria can be achieved by utilizing DNA markers. The most commonly 
used DNA markers are the essential genes present in all bacterial species. These markers have 
highly variable regions that can be used to distinguish various bacterial species. The DNA 
sequences within these variable regions can also suggest taxonomic relationships between dif-
ferent taxa. Additionally, DNA markers contain conserved regions that are necessary for use as 
primer-binding sites for PCR-based detection.

For example, the rRNA genes (Figure 11.23), encoding for the ribosomal RNA, are con-
served in all living organisms including bacteria. The bacterial rRNA operon contains three 
rRNA genes: the 5S and 23S rRNA genes encode the RNA components of the large subunit 
of the ribosome, while the 16S rRNA gene encodes the RNA component of the small subunit 
of the ribosome. The 16S rRNA gene is the most commonly used marker for the taxonomic 
identification of bacteria. The bacterial 16S rRNA genes are similar in length, approximately 
1.5 kb. They contain highly conserved regions that can be used as primer-binding sites for the 
amplification of the adjacent DNA regions. Additionally, they contain variable regions that 
allow for taxonomic identification. In forensic applications, they are used as a marker for the 
identification of vaginal bacteria as an indicator of vaginal secretions (Chapter 16). However, 
the number of variable regions in the 16S rRNA genes of some bacteria species is limited. 
Furthermore, closely related species have high levels of sequence similarity to the 16S rRNA 
genes. Thus, the 16S rRNA gene marker is not adequate for distinguishing closely related 
species.

DNA markers of bacteria identification can also be located in noncoding regions of DNA. 
The intergenic spacer region (ISR) between the 16S rRNA and 23S rRNA genes in the rRNA 
operon is another commonly used marker. The 16S–23S rRNA ISR contains both length and 
sequence variations between species. These variations are partially caused by the number and 
type of tRNA genes that this region of operon contains. For example, most gram-negative 
bacteria contain both a copy of the tRNAala and the tRNAile genes, while some contain only a 
copy of the tRNAglu gene. In contrast, most gram-positive bacteria have no tRNA gene; some 
contain either a copy of the tRNAala gene or the tRNAile gene or both. Thus, heterogeneity in 
the length and in the sequence of the 16S–23S rRNA ISR allows bacteria to be identified at the 
species level.

16S-23S rRNA ISR

P1 P2

5′

Promoter
sequences

16S rRNA 23S rRNA 5S rRNA

Terminator
sequences

T1 T2
3′

tRNAGlu

Figure 11.23 Schematic diagram of an Escherichia coli rRNA operon. E. coli has seven rRNA 
operons. A typical rRNA operon is shown. The rRNA operon encodes for three ribosomal RNA 
(rRNA) genes: the 5S and 23S genes code for the large ribosomal subunit, while the 16S gene 
encodes for the small ribosomal subunit. E. coli encodes one tRNA gene in the rRNA operon. 
The intergenic spacer regions (ISRs) and the promoter and terminator sequences are also shown. 
The rRNA operon is transcribed into a single precursor RNA transcript that is cleaved into separate 
rRNA and tRNA transcripts. The diagram is not to scale to the physical map of rRNA operons. 
(© Richard C. Li.)
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In addition to rRNA genes, many other genes are utilized as DNA markers for bacterial 
species identification. For example, the rpoB gene encodes the β subunit of bacterial RNA poly-
merase and is used as a marker for the forensic identification of fecal matter (Chapter 17). The 
sequence variation of the rpoB gene allows the distinguishing of species when they are not dis-
tinguishable, using 16S rRNA gene sequences. Several oral streptococcal species that produce 
extracellular polysaccharides contain the gtf gene, which encodes glucosyltransferase. Thus, the 
gtf gene is a useful marker for oral streptococcal species identification as a potential indicator of 
saliva in forensic investigations. However, this marker cannot be used to identify bacteria other 
than streptococcus. Nevertheless, combining several DNA markers can be used for the identifi-
cation of bacteria species.

11.8 Nondestructive Assays for the Identification of Bodily Fluids
Most of the bodily fluid identification techniques mentioned previously consume a portion 
of the evidence. When the amount of sample evidence is very limited, such destructive assays 
may consume the evidence that is also needed for subsequent forensic DNA analysis. Moreover, 
most of these tests are used for a single type of bodily fluid. Tests for multiple bodily fluids in 
question will consume additional amounts of the evidence. Therefore, nondestructive identi-
fication techniques are highly desired. Additionally, it is important to develop an assay that 
can be utilized to test multiple types of bodily fluids. Furthermore, a portable device that can 
identify bodily fluids at a crime scene is very useful. It provides investigators with test results 
immediately to aid the crime scene investigations. Two techniques have been developed that 
can potentially be used for nondestructive bodily fluid identification: fluorescence spectros-
copy and Raman spectroscopy.

Fluorescence spectroscopy is one example of a nondestructive technique. Fluorescence is 
the emission of light by a fluorophore. A fluorophore is a moiety in a molecule that fluoresces 
on absorbing the energy from an excitation light source or radiation. The emitted light usu-
ally has a longer wavelength and lower energy than the absorbed radiation. Constituents 
present in bodily fluids, such as nucleic acids, proteins, lipids, and metabolites, can exhibit 
fluorescence. The unique composition of a bodily fluid emits characteristic emission spec-
tra, thus making it identifiable. Using multiple wavelengths of an excitation light source, 
fluorescent emissions at a wide range of wavelengths can be detected, which allows for the 
identification of various bodily fluids. This technique is sensitive and rapid. It does not uti-
lize chemical reagents and the detection does not require physical contact with a sample. 
After identification, the same biological sample can be used for forensic DNA analysis. 
Additionally, portable fluorescence instruments can potentially be used at a crime scene for 
bodily fluid identification. However, it is not clear if exposure to an excitation light source 
can damage DNA evidence.

Raman spectroscopy is another example of a nondestructive technique. Raman spectroscopy 
utilizes a near-infrared excitation light source and measures the scattering of laser light caused by 
the vibrating molecules of a sample. A typical Raman spectrum provides information about the 
molecular structure and the “signature” based on the properties of the constituents of a sample. 
Thus, it is possible to obtain unique Raman spectra for a particular type of bodily fluid. Raman 
spectroscopy is highly sensitive. The measurements can be carried out on very small amounts of 
sample, ranging from a few picoliters to femtoliters. This technique does not require any chemi-
cal reagent. Additionally, it does not consume the sample, which can be used for subsequent 
DNA analysis. Raman spectroscopy has been utilized for various forensic purposes including the 
identification of drugs, trace evidence such as fibers, and questioned document evidence such as 
inks and paints. It can potentially be used for the nondestructive identification of various bodily 
fluids. A portable Raman spectrometer will allow bodily fluids to be identified at crime scenes.
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12
Identification of Blood

12.1 Biological Properties
Blood constitutes about 8% of the human body weight of a healthy individual. Plasma is the fluid 
portion of the blood. The cellular portion of the blood consists of red blood cells, white blood 
cells, and platelets, all of which are suspended in the plasma (Figures 12.1 and 12.2).

12.1.1 Red Blood Cells
These cells are also called erythrocytes. Their life span in humans is approximately 3–4 months. 
Additionally, mature human erythrocytes do not have nuclei, and therefore lack nuclear DNA. 
Erythrocytes consist of hemoglobin—proteins that are responsible for the transportation of 
oxygen. Most adult human hemoglobin consists of four polypeptide chains, two α chains and 
two β chains. Thus, adult hemoglobin is designated as α2β2. Other forms of hemoglobin will be 
discussed in Chapter 18. Under normal physiological conditions, each hemoglobin subunit con-
tains a heme moiety that binds to oxygen (Figure 12.3). A heme molecule consists of an organic 
component known as protoporphyrin IX and a ferrous (Fe2+) iron ion (Figure 12.4). A heme 
molecule is also known as ferroprotoporphyrin. The ferrous ion of heme forms four bonds with 
the nitrogens of protoporphyrin IX, along with a fifth bond with a hemoglobin chain and a sixth 
bond with a molecule of O2. Other chemicals such as carbon monoxide and cyanide also bind to 
the ferrous iron of the heme molecule and can cause chemical asphyxia. Heme groups are also 
present in the blood of various animals and in other proteins such as myoglobin in muscles and 
neuroglobin in the brain.

12.1.2 White Blood Cells
Also called leucocytes, white blood cells are subdivided into three types: granulocytes, lym-
phocytes, and monocytes. White blood cells are involved in defending the body against 
infection. They have nuclei and thus represent the main sources of nuclear DNA from the 
blood.

12.1.3 Platelets
These cells are also known as thrombocytes, and they play a role in blood clotting (Chapter 16). 
Platelets aggregate at sites of vascular and blood vessel injury. Like erythrocytes, they lack 
nuclei.
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12.2 Presumptive Assays for Identification
12.2.1 Mechanisms of Presumptive Assays
Presumptive blood assays are designed to detect traces of blood. These assays are based on the 
basic principle of the oxidation–reduction reaction catalyzed by the heme moiety of the hemo-
globin. As a result, colorless substrates catalyzed by heme undergo an oxidation reaction, caus-
ing either chemiluminescence, fluorescence, or a change of color. These assays are very sensitive 
and can detect blood in samples with 10–5−10–6-fold dilutions. A positive reaction indicates the 
possible presence of blood. Additionally, most of these assays do not interfere with forensic DNA 
analysis.

Figure 12.2 Blood cells. (© Richard C. Li.)

Plasma

Centrifuge

Whole blood
(with anticoagulant)

Cellular fraction

Erythrocyte

Leucocyte

Platelet

Figure 12.1 Basic composition of blood. Blood can be separated into two phases in the presence 
of an anticoagulant. The liquid portion called plasma accounts for approximately 55% of blood 
volume. The cellular elements include erythrocytes, leucocytes, and platelets. (© Richard C. Li.)
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Figure 12.3 Human adult hemoglobin. Four subunits, two α and two β chains, of human adult 
hemoglobin are shown. Each hemoglobin subunit contains a heme moiety. (© Richard C. Li.)
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Figure 12.4 Chemical structures of heme and its precursor and derivatives. (a) Protoporphyrin IX. 
(b) Heme (ferroprotoporphyrin). (c) Hemochromagen, R = pyridine (pyridineferroprotoporphy-
rin). (d)  Hematin hydroxide, R = OH (ferriprotoporphyrin hydroxide); hematin chloride, R = Cl 
(ferriprotoporphyrin chloride).
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12.2.1.1 Oxidation–Reduction Reactions
An oxidation–reduction reaction involves a change in the oxidation state of a molecule. Specifically, 
the oxidation of a molecule means that the molecule has lost electrons, and the reduction of a mol-
ecule means that the molecule has gained electrons. Chemicals that can be reduced and therefore 
gain electrons from other molecules are called oxidants. In contrast, reductants are chemicals that 
can be oxidized and therefore lose electrons to other molecules. In biochemical reactions, oxida-
tion often coincides with a loss of hydrogen. Figure 12.5 depicts an example of an oxidation–reduc-
tion reaction for blood identification. In presumptive assays, heme is utilized as the catalyst, and 
hydrogen peroxide is utilized as the oxidant for the reaction. In the presence of heme, a colorless 
substrate is oxidized, yielding a product with color, chemiluminescence, or fluorescence.

12.2.2 Colorimetric Assays
Many procedures are available for detecting heme in blood through color reactions. The most 
common agents are phenolphthalin, leucomalachite green, and benzidine derivatives. The color 
reactions produced by these assays can be observed immediately with the naked eye.

12.2.2.1 Phenolphthalin Assay
Phenolphthalein, a member of a class of indicators and dyes, is used in titrations of mineral and 
organic acids as well as most alkalis. The phenolphthalin assay for blood identification is also 
known as the Kastle–Meyer test. Kastle published a study in 1901, presenting the results of a 
reaction in which phenolphthalin, a colorless compound, is catalyzed by heme with hydrogen 
peroxide as the oxidant (Figures  12.6 and 12.7). The oxidized derivative is phenolphthalein, 
which appears pink under alkaline conditions.

12.2.2.2 Leucomalachite Green (LMG) Assay
Malachite green is a triphenylmethane dye. The leuco base form of malachite green is colorless 
and can be oxidized by the catalysis of heme to produce a green color. The reaction is carried out 
under acid conditions with hydrogen peroxide as the oxidant (Figures 12.8 and 12.9).

12.2.2.3 Benzidine and Derivatives
Historically, benzidine was used as an intermediate in dye manufacturing (Figure  12.10). 
Subsequently, it was used as a presumptive assay for the presence of blood after the discovery that 
the oxidation of benzidine can be catalyzed by heme to produce a blue to dark blue color (carried 
out in an acid solution). Since the blue color may eventually turn brown, the reaction must be read 

Heme 

(Colorless) 
+ AH2 H2O2

(Color) 
+ A 2H2O

Figure 12.5 Oxidation–reduction reaction as the basis for presumptive assays for blood identifica-
tion. AH2, substrate; A, oxidized substrate.

COOH

(a) (b) (c)
Phenolphthalin
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oxidized (pink)

H2O2

Heme

COOH

OH OHO HO

Figure 12.6 Chemical reaction of phenolphthalin assay.
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Figure 12.7 Photograph of phenolphthalin assay results. Negative (left) and positive (right) reac-
tion. (© Richard C. Li.)

Figure 12.9 Photograph of leucomalachite green assay results. Negative (left) and positive (right) 
reaction. (© Richard C. Li.)
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N(CH3)2

NCH3
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Leucomalachite green
reduced (colorless)

Malachite green
oxidized (blue-green)

Figure 12.8 Chemical reaction of leucomalachite green assay.
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immediately. Benzidine was found to be a carcinogen and is therefore no longer used for forensic 
testing. Orthotolidine is a dimethyl derivative of benzidine. Its oxidation reaction can be catalyzed by 
heme to produce a blue color reaction under acidic conditions (Figure 12.11). Orthotolidine is also 
considered a potential carcinogen based on animal studies, and for this reason it has been replaced by 
tetramethylbenzidine. Tetramethylbenzidine (TMB) is a tetramethyl derivative of benzidine. The oxi-
dation of TMB can be catalyzed by heme to produce a green to blue-green color under acidic condi-
tions. TMB continues to be used. The Hemastix® assay kit (Miles Laboratories) is a TMB-based assay 
that utilizes a TMB-containing strip device. A test is carried out by applying a moistened sample to 
a Hemastix® strip. The appearance of a green or a blue-green color indicates the presence of blood.

12.2.3 Chemiluminescence and Fluorescence Assays
Other organic compounds whose oxidation products have chemiluminescent or fluorescent 
properties are utilized for testing. In the chemiluminescence assay, light is emitted as a product 
of a chemical reaction. In this category, luminol produces chemiluminescence when blood is 
present. In contrast, a fluorescence assay requires the exposure of an oxidized product, such as 
fluorescin, to a particular wavelength of an excitation light source. The fluorescence is then emit-
ted at longer wavelengths than that of the excitation light source.

One advantage of chemiluminescent and fluorescent reagents is that they can be sprayed 
over large areas where latent bloodstains are potentially located. A positive reaction identifies 
blood and also reveals the patterns of bloody impressions such as footprints and fingerprints. 
These methods are very sensitive and can pinpoint the locations of even small traces of blood. 
Additionally, they are useful for detecting blood at crime scenes that have been cleaned and 
show no visible staining. One disadvantage of chemiluminescent and fluorescent reagents is 
that precautions must be taken if stains are very small or have been washed. The spraying of 

H3C H3CCH3 CH3

NHHN
Heme

Orthotolidine
reduced (colorless)
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oxidized (blue)

NH2

H2O2
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Figure 12.11 Chemical reaction of orthotolidine assay.
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Figure 12.10 Chemical structures of benzidine and derivatives: (a) benzidine; (b) orthotolidine; 
(c) tetramethylbenzidine.
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presumptive assay reagents may further dilute a sample and thus lead to difficulty in isolating 
sufficient amounts of DNA for forensic DNA analysis.

12.2.3.1 Luminol (3-Aminophthalhydrazide)
Luminol is usually utilized as a chemiluminescent reagent. The oxidation reaction of luminol 
catalyzed by heme produces light in the presence of an oxidant (Figures 12.12 through 12.14). 
The light emitted from a positive reaction can only be observed in the dark, which limits the 

Figure 12.14 Detecting latent bloodstains on a floor with luminol. Left: with the light on; right: 
immediately after the light is switched off. A blue chemiluminescence indicates the presence of 
blood traces. (From Bergervoet, P.W., et al., J Hosp Infect, 68, 329–333, 2008. With permission.)

Figure 12.13 Results obtained from testing a drop of blood on a glass plate with luminol. From left 
to right: drop of blood; drop of blood after spraying with luminol; drop of blood after spraying with 
luminol and viewing in the dark. A blue chemiluminescence indicates the presence of blood. (From 
Bergervoet, P.W., et al., J Hosp Infect, 68, 329–333, 2008. With permission.)
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Figure 12.12 Chemical reaction of luminol assay.
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applications of luminol. The photodocumentation of a luminol-enhanced pattern should be 
done immediately before it fades away.

12.2.3.2 Fluorescin
Fluorescin is another reagent that is used to test for the presence of bloodstains at a crime scene 
(Figures 12.15 and 12.16). When oxidized and catalyzed by heme, fluorescin demonstrates fluo-
rescent properties. Usually, fluorescin-sprayed stains are exposed to light in the range of 425–
485 nm using an alternate light source device. In a positive reaction, the oxidized fluorescin 
emits an intense yellowish-green fluorescent light, which indicates the presence of a bloodstain. 
The light emitted from fluorescin-sprayed stains lasts longer than that of luminol.

12.2.4 Factors Affecting Presumptive Assay Results
The catalytic assays discussed in the previous sections are not specific to blood only, which can 
possibly lead to the observation of false-positive or false-negative results (Figure 12.17).

12.2.4.1 Oxidants
Chemicals that are strong oxidants may cause a false-positive reaction. Such chemicals can 
catalyze the oxidation reaction even in the absence of heme and result in a false-positive reac-
tion. Certain metal salts, such as copper and nickel salts, household bleaches and cleaners that 
contain hypochlorite ions, and hair-coloring products that contain hydrogen peroxide, work as 
oxidants. To address this problem, a two-step catalytic assay should be performed. The substrate 

(2) Peroxidase

(1) Oxidant

(3) Reductant   (color)(colorless) 

AH2 + H2O2 + A 2H2O

Figure  12.17 Factors affecting presumptive assay results. Strong oxidant and peroxidase may 
cause false-positive results; reductant may cause false-negative results.

Figure 12.16 Detecting diluted bloodstains on black cotton fabric with fluorescin (left) and Bluestar 
(right). (From Finnis, J., Lewis, J., and Davidson, A., Sci Justice, 53, 178–186, 2013. With permission.)

O OHHO
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Figure 12.15 Chemical structure of fluorescein.
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is applied first to the sample in question. A color change occurring before the addition of hydro-
gen peroxide indicates a false-positive result due to a possible oxidant in the sample. If a color 
change is observed after the addition of hydrogen peroxide, the result is a true positive.

12.2.4.2 Plant Peroxidases
Many types of plants such as horseradish contain peroxidases. Plant peroxidases may also cata-
lyze oxidation reactions and lead to false-positive results. However, plant peroxidases are usu-
ally heat sensitive and may be inactivated by high temperatures. Because the heme molecule is 
relatively stable at high temperatures, samples can be retested after heating. This will inactivate 
any plant peroxidases in a sample.

12.2.4.3 Reductants
Although not common, a false-negative result can occur when a strong reductant is present in 
a sample. Strong reductants such as certain metal ions including lithium and zinc may inhibit 
the oxidation reaction.

12.3 Confirmatory Assays for Identification
12.3.1 Microcrystal Assays
Microcrystal assays apply chemicals to treat bloodstains, forming crystals of heme molecules. 
The morphologies of the resulting crystals are distinctive for heme and can be compared with a 
known standard using a microscope. A positive microcrystal assay strongly indicates the pres-
ence of blood. However, confirmatory assays are usually not as sensitive as presumptive assays. 
Additionally, these assays cannot distinguish between human and animal blood.

12.3.1.1 Hemochromagen Crystal Assay
Hemochromagens are heme derivatives in which the ferrous iron of the heme forms two bonds 
with nitrogenous bases (Figure  12.4). The method for forming hemochromagen crystals was 
documented in 1864. Since then, various modifications have been reported. The Takayama crys-
tal assay, published in 1912, has been the method preferred by many forensic laboratories. A 
bloodstain is treated with pyridine and glucose (a reducing sugar that is capable of reducing ferric 
ion) under alkaline conditions to form crystals of pyridine ferroprotoporphyrin (Figure 12.18).

Figure 12.18 Microcrystal assays using the Takayama method. (© Richard C. Li.)
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12.3.1.2 Hematin Crystal Assay
This assay is also known as the Teichmann crystal assay. In 1853, Teichmann documented a 
method of forming crystals of blood specimens. When blood specimens are treated with glacial 
acetic acid and salts, and subsequently heated, hematin chloride (ferriprotoporphyrin chloride), 
a prismatic brown-colored crystal, is formed (Figure 12.19). Hematin (Figure 12.4) is a heme 
derivative; its iron is in the ferric (Fe+3) state. This hematin assay has a similar sensitivity and 
specificity as hemochromagen assays. The hematin assay has the advantage of being more reli-
able than hemochromagen assays for aged blood samples.

12.3.2 Other Assays
Additional techniques may be used to confirm the presence of hemoglobin. For example, chro-
matographic and electrophoretic methods can identify hemoglobin by its mobility characteris-
tics. Spectrophotometric methods for identifying hemoglobin are based on measurements of the 

Figure 12.19 Microcrystal assays using the Teichmann method. (From James, S.H., Nordby, J.J., 
and Bell, S., Forensic Science: An Introduction to Scientific and Investigative Techniques, 4th edn., 
CRC Press, Boca Raton, 2014. With permission.)

Table 12.1 Application of RT-PCR Assay for Blood Identification

Gene Symbol Gene Product Description Further Reading

HBA1 Hemoglobin α1 Hemoglobin α1 chain 
(abundant in erythrocytes)

Waye and Chui (2001)

PBGDa Porphobilinogen 
deaminase

Erythrocyte-specific isoenzyme 
of heme biosynthesis pathway

Gubin and Miller (2001)

SPTB β-Spectrin Subunit of major protein of 
erythrocyte membrane 
skeleton

Amin et al. (1993)

Source: Adapted from Juusola, J. and Ballantyne, J., Forensic Sci Int, 152, 1–12, 2005; 
Nussbaumer, C., Gharehbaghi-Schnell, E., and Korschineck, I., Forensic Sci Int, 157, 
181–186, 2006.

a Also known as hydroxymethylbilane synthase (HMBS).
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characteristic light spectra, with peak absorbance at 400–425 nm, absorbed by hemoglobin and 
its derivatives. Finally, immunological methods utilize antihuman hemoglobin antibodies. This 
antibody can be used to detect human hemoglobin and thus indicate the presence of human 
blood (see Chapter 13).

Recently, RNA-based assays have been developed to identify blood. These assays are based on 
the fact that certain genes are specifically expressed in certain cell types (Chapter 11). Thus, the 
techniques used in the identification of blood are based on the detection of specific types of mes-
senger RNA (mRNA) that are expressed exclusively in erythrocytes. These assays utilize reverse 
transcriptase polymerase chain reaction (RT-PCR; see Chapter 7) methods to detect the gene 
expression levels of mRNAs for blood identification. Table 12.1 summarizes the tissue-specific 
genes utilized for blood identification. Compared with conventional assays that are used for 
blood identification, the RNA-based assays have higher specificity and are amenable to automa-
tion. However, one limitation is that RNA is unstable due to degradation by endogenous and 
environmentally born ribonucleases.
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13
Species Identification

Chapter 12 discussed the principles of the identification of blood. If a stain is identified as blood, 
the evidence can be tested to determine whether the blood is of human origin. If the bloodstain 
is nonhuman, further analysis is usually not necessary.

Before forensic DNA techniques were implemented, species identification was largely deter-
mined by serological methods. Currently, most forensic laboratories perform DNA quantita-
tion prior to DNA profile analysis. The quantitation method specifically detects higher-primate 
DNA. The presence of DNA measured by the quantitation assays concurrently identifies a sam-
ple as being of human origin (since crimes involving primate blood are extremely rare). Thus, 
species identification is usually not performed in forensic laboratories.

Nevertheless, species identification assays can be useful for screening to exclude or elimi-
nate nonhuman samples unrelated to an investigation. Thus, it is practical for small laboratories 
to eliminate unnecessary analyses due to time and budget constraints. Additionally, species 
identification kits such as immunochromatographic devices allow field testing by crime scene 
investigators.

In cases involving the killing, trading, and possession of products derived from species that 
are protected from illegal hunting, it may be necessary to identify the animal species prior to 
further analysis. Species identification using DNA analysis can be performed using commonly 
used loci at the mitochondrial cytochrome b gene (Cytb), the cytochrome c oxidase I gene (COI), 
and the D-loop region. This type of identification is usually within the scope of wildlife forensic 
science and is thus not discussed here.

13.1 General Considerations
Most assays for species identification are based on serological techniques, including primary 
and secondary binding assays. The most common primary binding assays are immunochro-
matographic assays. The most commonly used secondary binding assays are precipitation-based 
assays that rely on the binding of an antigen to an antibody, causing the formation of visible 
precipitation. These precipitation-based assays include ring assays, Ouchterlony assays, and 
crossed-over immunoelectrophoresis. These assays utilize antihuman and antianimal antibod-
ies to identify human and animal species, respectively.

13.1.1 Types of Antibodies
An antihuman antibody that is used in the identification of human samples can be made by 
introducing human serum into a host animal, which then produces specific antibodies against 
the human serum proteins. Antibodies produced from different species of host animals may 
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produce variations in the characteristics of reactions. Since albumin is the most abundant pro-
tein in human serum, the antihuman antibody that is produced reacts strongly with human 
albumin. Albumin is a protein that plays important roles in the maintenance of the vascular 
circulating fluid and the transportation of various substances such as nutrients, hormones, and 
metabolic products. Blood is drawn from the host animal and the serum portion is collected. 
The collected serum is a polyclonal antihuman antiserum containing a mixture of antibodies 
against various human serum proteins. Likewise, an antibody against animal serum proteins 
can also be made to identify animal species of interest.

Other antibodies such as antihuman hemoglobin (Hb) antibodies can also be used to identify 
the human origin of a sample. Hb is an oxygen-transport protein that is found in erythrocytes 
(Chapter 12). Purified Hb can be used to generate monoclonal and polyclonal antihuman Hb 
antibodies. Likewise, antibodies recognizing glycophorin A (GPA), a human erythrocyte mem-
brane antigen (see Section 13.2.1.2), can also be produced in a similar manner.

13.1.2 Titration of Antibodies
Recall that the ratio of antigen to antibody is critical for the success of a secondary reaction 
(Chapter 10). An extreme excess of antigen or antibody concentrations can inhibit secondary 
reactions. The prozone and postzone phenomena must be considered, and the concentrations of 
antigen and antibody must be carefully determined for forensic serology assays. For instance, 
in the prozone situation, a false-negative reaction may occur due to the presence of a high con-
centration of antibody.

Quality-control procedures can be used to estimate the amount of a specific antibody 
that is present, often via titration (Figure 13.1). To titrate an antiserum, a series of dilutions 
are made and each dilution is then tested for activity using precipitation or agglutination 
methods. The reciprocal of the highest dilution giving a positive reaction is known as the 
titer. This ref lects the amount of antibody in the antiserum. Additionally, the polyclonal 
antiserum is a mixture of antibodies; thus, the reaction of the antiserum may vary from 
animal to animal (of the same species). Each lot or batch of antiserum must be validated by 
titration.

13.1.3 Antibody Specificity
In addition to the titer, the specificity of the antihuman antibody must be tested. Most 
antihuman antibodies usually have cross-reactivity with higher primates. This is not a great 

Undiluted 1/2 1/4 1/8 1/16 1/32 1/64 1/128 Negative
control

Figure 13.1 Titration of antibodies. Serum is serially diluted and a constant amount of antigen is 
applied to each tube. The mixture is incubated, allowing agglutination to occur. The reciprocal of the 
highest dilution giving a positive agglutination reaction is 64 (the titer). (© Richard C. Li.)
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concern because crimes involving nonhuman primates are very rare. Nevertheless, the antihu-
man antibody must not cross-react with other commonly encountered animals. Antisera and 
positive control samples must be validated for cross-reactivity. Tissue specificity must also be 
validated. The antiserum against human serum is usually reactive with other human biological 
fluids such as semen and saliva.

13.1.4 Optimal Conditions for Antigen–Antibody Binding
A number of factors can affect antigen–antibody binding. For example, increasing ionic 
strength can inhibit the binding of an antigen and an antibody. Stronger inhibition is usu-
ally observed for ions with large ionic radii and small radii of hydration. It is believed that 
the lower degree of hydration permits interactions of ions and the antibody-binding site, 
leading to inhibition. A proper buffer system must be selected in serological assays to ensure 
reliable results. The introduction of polymers can facilitate precipitation in secondary bind-
ing reactions because the presence of a polymer in a solution decreases the solubility of pro-
teins. Linear hydrophilic polymers with high molecular weights (e.g., polyethylene glycol) are 
preferred. Additional factors such as temperature and pH can also affect antigen–antibody 
binding.

13.2 Assays
Samples can be prepared by cutting out a portion of a stain or scraping stains from a surface. 
A sample is usually extracted with a small volume of saline or buffer. The extracted sample can 
be tested using the assays described in the following subsections. Controls should be included, 
for example, by using a known human serum as a positive control and an extraction blank as a 
negative control.

13.2.1 Immunochromatographic Assays
Immunochromatographic assays are rapid, specific, and sensitive and can be used in both labo-
ratory and field tests for species identification. Two types of assays are discussed, including those 
based on the detection of human erythrocyte proteins. Chapter 11 discusses the principle of 
immunochromatographic assays in more detail.

13.2.1.1 Identification of Human Hemoglobin Protein
Commercially produced immunochromatographic kits such as the Hexagon OBTI (Human 
Gesellschaft für Biochemica und Diagnostica mbH, Wiesbaden) and the ABAcard HemaTrace® 
(Abacus Diagnostics, California) are available. They utilize the antibody–antigen–antibody 
sandwich method by using antibodies that recognize human Hb. The ABAcard HemaTrace 
assay utilizes a labeled monoclonal antihuman Hb antibody contained in a sample well, and a 
polyclonal antihuman Hb antibody immobilized at a test zone of a nitrocellulose membrane. 
Additionally, an antiglobulin that recognizes the antibody is immobilized onto a control zone 
(Figure 13.2).

A sample can be prepared by cutting a small portion (2 mm diameter) of a stain or a swab. 
Each sample is extracted for 5 min in 2 mL of extraction buffer. A longer extraction time may be 
used for older stains. The samples are loaded into the sample well, and the antigen in the sample 
binds to the labeled antibody in the well to form an antigen–antibody complex, which then 
diffuses across the nitrocellulose membrane. At the test zone, the solid-phase antihuman Hb 
antibody binds to the antigen–antibody complex to form a labeled antibody–antigen–antibody 
sandwich.

The ABAcard HemaTrace® uses a pink dye that is visualized in a positive result as a pink 
horizontal line at the test zone (Figure 13.3). In the control zone, unbound labeled antihuman 
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Hb antibody binds to the solid-phase antiglobulin. This antibody–antiglobulin complex at the 
control zone also produces a pink horizontal line. The test is considered valid only if the line in 
the control zone is observed. The presence of human Hb results in a pink line at both the test 
and control zones. The absence of human Hb results in a pink line in the control zone only. A 
positive result can appear in less than a minute.

Validation studies have revealed that the sensitivity of the ABAcard HemaTrace® can be as low 
as 0.07 μg/mL of Hb. The normal blood Hb concentration is 14–18 and 12–16 g/dL among males 
and females, respectively. This assay is more sensitive than the Kastle–Meyer assay (Chapter 12). 
Additionally, the assay is responsive to aged stains and degraded materials. Specificity studies 
have shown that it is specific for blood of higher primates, including humans. However, it is also 
responsive to seminal stains, and oral, vaginal, anal, and rectal swabs. It is believed that these 
biological fluids contain very low amounts of Hb, which can still be detected by highly sensitive 
assays. However, if the concentration of blood is too high, a false negative can result due to the 
high-dose hook effect described in Chapter 11.

13.2.1.2 Identification of Human Glycophorin A Protein
Commercially produced immunochromatographic kits such as RSID™-Blood (Independent 
Forensics, Hillside, IL) use antibodies that recognize human GPA (Figure  13.4). A labeled 
monoclonal antihuman GPA antibody is contained in a sample well, and a second monoclonal 
antihuman GPA antibody, to a different epitope of GPA, is immobilized onto a test zone of the 
membrane. An antiglobulin that recognizes the antibody is immobilized onto a control zone 
(Figure 13.5).
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Figure 13.2 Immunochromatographic assays for the identification of Hb in human blood. (a) In 
a sample well, Hb in a blood sample is mixed with a labeled anti-Hb Ab. (b) The Hb binds to 
the labeled anti-Hb Ab to form a labeled Ab–Hb complex. The complex diffuses toward the test 
zone. (c) At the test zone, the labeled Ab–Hb complex binds to an immobilized anti-Hb Ab to 
form a labeled Ab–Hb–Ab sandwich. (d) At the control zone, the labeled anti-Hb Ab binds to an 
immobilized antiglobulin and is captured. Ab and Hb represent the antibody and hemoglobin, 
respectively. (© Richard C. Li.)
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The sample can be collected by cutting out a small portion of a stain or a swab. The sample is 
then extracted overnight in an extraction buffer. The extract is removed and mixed with a run-
ning buffer. The assay is carried out by loading the extracted sample into the sample well. Again, 
the presence of GPA results in a pink line at both the test zone and the control zone, while the 
absence of GPA results in a pink line in the control zone only. The test is considered valid only if 
the line in the control zone is observed. A result can be read after 10 min.

Validation studies revealed that the sensitivity of the RSID kit can be as low as 100 nL of 
human blood. Species specificity studies showed no cross-reactivity with various animal spe-
cies, including nonhuman primates. Biological fluid specificity studies revealed that the kit is 
not responsive to other human biological fluids such as semen, saliva, urine, milk, and amniotic 
and vaginal fluid. No high-dose hook effects were observed in samples containing up to 5 μL of 
blood.

Figure  13.3 Human blood identification using immunochromatic devices. Top: In an assay 
using an ABAcard HemaTrace device, the negative (left) and positive (right) results are shown. 
The “C” band indicates that the test is valid. The “T” band indicates the presence of human 
blood. The sample well is labeled “S.” (© Richard C. Li.) Bottom: The positive (left) and nega-
tive (right) results are shown using a Hexagon-OBTI device. The “C” band indicates that the 
test is valid. The “T” band indicates the presence of human blood. (From Ramsthaler, F., et al., 
Postmortem interval of skeletal remains through the detection of intraosseal hemin traces. A 
comparison of UV-fluorescence, luminol, Hexagon-OBTI(R), and Combur(R) tests. Forensic Sci 
Int, 209, 59–63, 2011. With permission.)
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Extracellular domain

Cytosolic domain

Figure 13.4 Diagram of the structure of glycophorin (GPA) protein. GPA is a transmembrane pro-
tein on the human erythrocyte membrane. A GPA dimer is shown. The extracellular domain of the 
GPA is glycosylated with carbohydrate side chains (red). Various GPA epitopes are antigenic deter-
minants of several blood group systems. (© Richard C. Li.)
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Figure 13.5 Immunochromatographic assays for the identification of GPA in human blood. (a) In a 
sample well, GPA in a blood sample is mixed with a labeled anti-GPA Ab. (b) The GPA binds to the 
labeled anti-GPA Ab to form a labeled Ab–GPA complex. (c) At the test zone, the labeled Ab–GPA 
complex binds to an immobilized anti-GPA Ab to form a labeled Ab–GPA–Ab sandwich. (d) At the 
control zone, the labeled anti-GPA Ab binds to an immobilized antiglobulin and is captured. Ab and 
GPA represent the antibody and GPA protein, respectively. (© Richard C. Li.)
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13.2.2 Double Immunodiffusion Assays
13.2.2.1 Ring Assay
Chapter 11 discussed the basic principle of ring assay in detail. In this double immunodiffu-
sion assay, an antihuman antibody reagent is placed at the bottom of a test tube and a blood-
stain extract is placed on top of the bottom layer, as illustrated in Figure 13.6. The procedure is 
described in Box 13.1. In a positive reaction, a white precipitate between the two layers observed 
after several minutes indicates that a sample is of human origin. If the bloodstain extract is not 
human, no precipitation should appear.

13.2.2.2 Ouchterlony Assay
The basic principle of this double immunodiffusion assay has also been discussed in Chapter 11. 
The procedure of the Ouchterlony assay is described in Box 13.2. In a positive reaction, a line 
of precipitate will form between each antigen well and antibody well. This assay can also deter-
mine the similarity of the antigens (Figure 13.7). During the diffusion process, different anti-
gen–antibody complexes migrate at different rates. Consequently, a separate line of precipitate 
will appear in the gel for each antigen–antibody complex. In an assay in which two antigens are 
loaded in adjacent wells and an antibody in the third well, the following results can be observed:

  If the two antigens are identical, the two lines will become fused. This phenomenon is 
referred to as identity.

  If the two antigens are totally unrelated, the lines will cross each other but not fuse; 
this is known as nonidentity.

  If the two antigens are related (share a common epitope) but are not identical, the lines 
will merge with spur formation. The spurs are continuations of the line formed by the 
antigen due to its unique epitope. This phenomenon is known as partial identity.

Thus, in a species test, a positive result is noted when the precipitate lines for the positive 
controls and the samples fuse. No spur formation should be observed.

13.2.3 Crossed-Over Electrophoresis
This method is a combination of immunodiffusion and electrophoresis (also see Chapter 11). 
The procedure for the assay is described in Box 13.3. With this technique, a sharp precipitate 
band is visualized in a positive reaction (Figure 13.8). However, false-negative results can occur 
due to the postzone phenomenon, in which excess antigen may inhibit precipitation. In this 

Antigen
solution

Antiserum

Ring of precipitate

Figure  13.6 Ring assay. The antigen solution is carefully applied over the antiserum solution. 
Incubation may be necessary in order to form a ring of precipitate. (© Richard C. Li.)



Forensic Biology, Second Edition

252

BOX 13.1 RING ASSAY PROCEDURE

Sample preparation and extraction
• Extract a portion of a stain with saline at 4°C overnight.

Controls
• Include a positive control (known human serum sample) and a negative control 

(extraction blank).

Loading of antibody and samples
• Spin the antihuman antibody in a microfuge and transfer the supernatant into 

test tubes or capillary tubes (depending on the volume of the stain and the anti-
serum extracted).

• Place the sample carefully over the top of the antiserum solution, which is usually 
denser than the sample.

Immunodiffusion reaction
• Carry out the reaction at room temperature.
• In a positive reaction, white precipitate between the two layers can be observed 

after several minutes. This indicates that the sample is of human origin. No pre-
cipitate is formed if a bloodstain extract is from a nonhuman origin.

BOX 13.2 OUCHTERLONY ASSAY PROCEDURE

Sample preparation and extraction
• Cut out a small portion (approximately 5 × 5 mm) of a stain or a portion of a 

swab.
• Extract at room temperature in 100 μL of water for 30 min. The extract can be 

diluted if necessary. Alternatively, a very small piece of the stain or swab can be 
inserted directly into the well.

Controls
• Positive (known serum)
• Negative (extraction blank)
• Substrate controls (extraction of substrate from unstained area) if applicable

Agarose gel preparation
Heat a suspension of agarose (4%) until liquefied. Cool the solution in a water bath at 55°C. 
Pour the agarose onto a piece of glass slide and let the gel solidify to a thickness of about 
2–3 mm. Alternatively, a polyester support film such as GelBond (Cambrex, New Zealand) 
can be used as a gel support. The agarose should be poured onto the hydrophilic side of a 
piece of GelBond film (6 × 9 cm). Punch wells consisting of a central well surrounded by 
four wells using a template.
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situation, the sample can be diluted and the assay can be repeated. False-negative results can 
also occur due to simple mistakes made during electrophoresis:
  Electrophoresis is carried out in the opposite direction, which results in samples run-

ning off the gel.
  Electrophoresis is carried out using an incorrect buffer system, affecting antigen–

antibody binding. The amount of current applied during the electrophoresis is too 
strong and generates heat and denatures proteins.

Ag1 Ag2

Precipitate

Ab

(a)

(b)

(c)

Figure 13.7 Results of Ouchterlony assay. Ab indicates an antibody. Ag1 and Ag2 are the antigen 
samples in question. (a) Identity. The two antigens are identical (fused line). (b) Nonidentity. The 
two antigens are unrelated (spur). (c) Partial identity. The two antigens are related but not identical 
(fused line with spur). (© Richard C. Li.)

Loading antibodies and samples
• Apply antihuman antibody to the central well. Apply the positive control to one 

of the surrounding wells.
• Apply the sample(s) in question next to a positive control.
• Apply negative and substrate controls to the remaining wells; only one negative 

control is needed per gel.

Immunodiffusion reaction
Incubate the plate overnight in a moisture chamber at 37°C.

Staining
Soak the gel overnight in saline solution and then soak it in deionized water for 10 min. 
Repeat once. Dry the gel between paper towels with a weight on top for 30 min. Dry in an 
oven for 30 min. Stain the gel with Coomassie blue. Stained precipitate bands appear blue.
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BOX 13.3 CROSSED-OVER ELECTROPHORESIS PROCEDURE

Sample preparation and extraction
• Cut out a small portion (~5 × 5 mm) of a stain or a portion of a swab.
• Extract at room temperature in 100 μL of water for 30 min. The extract can be 

diluted if necessary. Alternatively, a very small piece of the stain or swab can be 
inserted directly into the well.

Controls
• Positive (known serum)
• Negative (extraction blank)
• Substrate (extraction of substrate from unstained area) if applicable

Agarose gel preparation
Heat a suspension of agarose (4%) until liquefied. Cool the solution in a water bath at 55°C. 
Pour the agarose onto a piece of glass slide and let it solidify. Alternatively, a polyester sup-
port film such as GelBond can be used as a gel support. The agarose should be poured onto 
the hydrophilic side of a piece of GelBond (6 × 9 cm). Punch small wells (about 1–2 mm) 
in rows using a template.

Loading antibodies and samples
• Apply antihuman antibody in one row of wells.
• Apply samples in the other row of wells. Apply the positive, negative, and sub-

strate controls.

Electrophoresis
Submerge the agarose gel in an electrophoresis tank in proper orientation. The wells con-
taining antihuman antibody should be closest to the anode (positive electrode) and the 
wells containing samples should be closest to the cathode (negative electrode). During 
electrophoresis, the antibody in the antiserum should migrate toward the cathode while 
the antigen migrates toward the anode. Electrophoresis is carried out at 10  V/cm for 
20 min.

Staining
Soak the gel overnight in a saline solution and then soak it in deionized water for 10 min. 
Repeat once. Dry the gel between paper towels with a weight on top for 30 min. Dry in 
an oven for 30 min. Stain the gel with Coomassie blue. Stained precipitate bands appear 
blue.
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14
Identification of Semen

14.1 Biological Characteristics
A typical ejaculation releases 2–5 mL of semen, which contains seminal fluid and sperm cells 
(spermatozoa). A normal sperm count ranges from 107 to 108 spermatozoa per milliliter of 
semen. The spermatozoa are formed from spermatogonia in the seminiferous tubules of the tes-
tes. This process of generating spermatozoa is referred to as spermatogenesis (Figure 14.1). The 
spermatozoa are then transported and stored in the tubular network of the epididymis where 
they undergo functional maturation (spermatogenesis and maturation take approximately 
3 months). The epididymis joins the ductus deferens, which transports matured sperm from 
the epididymis to the ejaculatory duct. From there, spermatozoa follow the ejaculatory ducts 
into the prostatic urethra where they are joined with secretions from the prostate. Figure 14.2 
illustrates the anatomy of the male reproductive system.

Seminal fluid is a complex mixture of glandular secretions. A typical sample of seminal fluid 
contains the combined secretions of several accessory glands. Seminal vesicle fluid accounts 
for approximately 60% of the ejaculate. Various proteins secreted by the seminal vesicles play a 
role in the coagulation of the ejaculate. Additionally, seminal vesicle fluid contains flavin, which 
causes semen to fluoresce under ultraviolet light, often utilized when searching for semen-stain 
evidence.

Prostatic fluid secretions account for approximately 30% of the ejaculate. The components of 
this fluid are complex as well. This portion of semen contains high concentrations of acid phos-
phatase (AP) and prostate-specific antigen (PSA). Both are useful markers for the identification 
of semen in forensic laboratories. The epididymis and the bulbourethral secretions each account 
for approximately 5% of the ejaculate.

A vasectomy is the surgical removal of a bilateral segment of the ductus deferens. The sur-
gery prevents spermatozoa from reaching the distal portions of the male reproductive tract. 
However, a vasectomized male can still produce ejaculate that contains only seminal vesicle 
fluid, prostatic fluid, and bulbourethral fluid. The condition by which males have abnormally 
low sperm counts is known as oligospermia. Azoospermia is a condition that causes males to 
produce no spermatozoa. However, the secretion of seminal fluid is not affected in males who 
have these conditions. DNA derived from epithelial cells can be isolated from the seminal 
fluids of these individuals.

14.1.1 Spermatozoa
A human spermatozoon has three morphologically distinct structures: the head, the middle 
piece, and the tail (Figure 14.3). The head contains a nucleus with densely packed chromo-
somes. At the tip of the head is the acrosomal cap, which is a membranous compartment 
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containing enzymes essential for fertilization. The head is attached to the middle piece 
through a short neck where the mitochondria that provide the energy for moving the tail are 
located. The tail or flagellum is responsible for spermatozoon motility. In contrast to other 
cell types, a mature spermatozoon lacks various intracellular organelles such as an endo-
plasmic reticulum, Golgi apparatus, lysosomes, and peroxisomes. In a normal male, at least 
60% of spermatozoa have normal morphology, so morphological abnormalities can often be 
observed.

Figure  14.1 Spermatogenesis. In the seminiferous tubules (left) of the testes, spermatogonia 
(located at peripheral area of the seminiferous tubules) are differentiated to spermatids (located 
at the center of the seminiferous tubules). The spermatids are eventually differentiated to matured 
spermatozoa (right). (© Richard C. Li.)
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Figure 14.2 Male reproductive system and accessory glands (unilateral view). (© Richard C. Li.)
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14.1.2 Acid Phosphatase
Acid phosphatase (AP) consists of a group of phosphatases with optimal activity in an acidic pH 
environment. The greatest forensic importance of AP is that the prostate-derived AP contributes 
most of the AP activity present in semen. AP levels in semen are not affected by vasectomies. AP 
isoenzymes are also found in other tissues (Section 16.2).

The half-life of AP activity at 37°C is 6 months. However, the half-life is decreased if a sample 
is stored in a wet environment. AP activity can be detected from dry seminal stains stored at 
–20°C up to 1 year. Low levels of prostatic AP are present in the sera of healthy males. Elevated 
levels of prostatic AP found in serum are useful in diagnosing and monitoring prostate car-
cinoma. Many AP tests utilized in clinical testing may be used to identify semen for forensic 
applications.

14.1.3 Prostate-Specific Antigen
Prostate-specific antigen (PSA) is a major protein present in seminal fluid at concentrations of 
0.5–2.0 mg/mL. PSA is produced in the prostate epithelium and secreted into the semen. PSA 
can also be found in the paraurethral glands, perianal glands, apocrine sweat glands, and mam-
mary glands. Thus small quantities can be detected in urine, fecal material, sweat, and milk. 
PSA can also be found at much lower levels in the bloodstream. An elevated plasma PSA is 
present in prostate cancer patients, and it is widely used as a screening test for this disease. PSA 
is also elevated in cases of benign prostatic hyperplasia and prostatitis. The synthesis of PSA is 
stimulated by androgen, a steroid hormone.

PSA is a protein that has a molecular weight of 30 kDa and is thus also known as P30. It 
is responsible for hydrolyzing semenogelin (Sg), which mediates gel formation in semen 
(Section 14.1.4). PSA is a member of the tissue kallikrein (serine protease) family and is encoded 
by the KLK3 locus located on chromosome 19. In addition to PSA, other tissue kallikreins 
encoded by KLK2 and KLK4 loci are expressed in the prostate. The half-life for PSA in a dried 
semen stain is about 3 years at room temperature. The half-life is greatly reduced when a sample 
is stored in wet conditions.

14.1.4 Seminal Vesicle–Specific Antigen
Human seminal vesicle–specific antigen (SVSA) includes two major types, semenogelin I 
(SgI) and semenogelin II (SgII), and constitutes the major seminal vesicle–secreted protein 
in semen. On ejaculation, SVSA forms a coagulum that is liquefied after a few minutes due 
to the degradation of SVSA by PSA. In humans, both SgI and SgII are present in a number 
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Figure 14.3 Structure of spermatozoon. (© Richard C. Li.)
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of tissues of the male reproductive system, including the seminal vesicles, ductus deferens, 
prostate, and epididymis. They are also present in several other tissues such as skeletal 
muscle, kidney, colon, and trachea. They have also been found in the sera of lung cancer 
patients.

The use of Sg as a marker for semen identification instead of PSA presents certain advantages. 
The concentration of Sg in seminal fluid is much higher than that of PSA, and this is beneficial 
for the sensitivity of detection. Sg is present in seminal fluid and absent in urine, milk, and 
sweat, where PSA can be found. Although Sg compounds are present in skeletal muscle, kidney, 
and colon, this is not a great concern because these tissue samples are not routinely collected for 
semen detection in sexual assault cases.

14.2 Analytical Techniques for Identifying Semen
The location of semen stains is usually carried out through visual examination. Particularly, 
the application of alternate light sources (ALSs) can facilitate searches for semen stains. The 
presumptive identification of semen is largely based on the detection of the presence of prostatic 
AP activity in a sample. However, most presumptive assays cannot completely distinguish pros-
tatic AP from nonprostatic AP. Confirmatory assays for the identification of semen are available, 
including the microscopic examination of spermatozoa, the identification of PSA and SVSA, 
and the RNA-based assay.

14.2.1 Presumptive Assays
14.2.1.1 Lighting Techniques for Visual Examination of Semen Stains
Lighting techniques can be used to aid in searching for semen stains. A dried semen stain fluo-
resces under certain light sources such as ALSs or argon lasers. ALSs are most commonly uti-
lized for the visual examination of semen stains (Chapter 1; Figures 14.4 and 14.5). Excitation 
wavelengths between 450 and 495 nm can be used, allowing for the visualization of fluorescence 
with orange goggles. However, this approach is not specific for semen. Other bodily fluid stains, 
such as saliva and urine stains, can also fluoresce with less intensity. Additionally, the intensity 
of the fluorescence can be affected by different colors of substrates, and the material, such as 
clothing, where semen stains have been deposited.

Figure 14.4 A tabletop ALS device (left) for the detection of semen stains (right). (© Richard 
C. Li.)
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14.2.1.2 Acid Phosphatase Techniques
14.2.1.2.1 Colorimetric Assays
Colorimetric assays can be used for the presumptive identification of semen. The AP contained 
in semen can hydrolyze a variety of phosphate esters. It catalyzes the removal of the phosphate 
group from a substrate (Figure 14.6). Subsequently, an insoluble colored precipitate at sites of 
acid phosphatase activity is formed with a stabilized diazonium salt (usually in the form of zinc 
double salts).

(a)

(b)

Figure 14.5 Examining a garment for semen stains. (a) A potential semen stain (labeled) is found 
on a garment, and (b) the stain fluoresces when irradiated with an ALS device. (© Richard C. Li.)
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Figure 14.6 Reaction catalyzed by acid phosphatases (EC 3.1.3.2). The optimal pH of the reaction 
is usually under pH 7.
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However, interference during a test by nonprostatic AP isoenzymes (multiple forms of AP), 
such as contamination by AP commonly present in vaginal secretions (Chapter 16), can create 
problems in specimens collected from victims. Thus, it is desirable to be able to increase the 
specificity of the assay for prostatic AP. One solution is the application of substrates that are 
hydrolyzed rapidly by the prostatic enzyme and at a slower rate by the other forms of AP iso-
enzymes. For example, α-naphthylphosphate and thymolphthalein monophosphate are more 
specific to prostatic AP than phenyl phosphate and 4-nitrophenyl phosphate (Figure 14.7). The 
most common method for forensic applications is the use of α-naphthyl phosphate as a sub-
strate. In the presence of AP, α-naphthylphosphate is hydrolyzed to phosphate and α-naphthol. 
Subsequently, the Fast Blue B, a stabilized diazonium salt, is added to carry out an azo coupling 
reaction, producing a purple azo dye (Figures 14.8 through 14.10).

Prostatic AP is water soluble. Thus, a moistened cotton swab or piece of filter paper can be 
used to transfer a small amount of sample from a stain by briefly pressing onto the questioned 
stain area. The α-naphthylphosphate reagent is added to the swab or filter paper followed by the 
addition of Fast Blue B reagent. If a purple coloration develops within 1 min, the test is consid-
ered a positive indication for semen. Color that develops after more than 1 min may arise from 
the activity of nonprostatic AP.

Additionally, the prostatic enzyme is strongly inhibited by dextrorotatory tartrate ions. Thus, 
these inhibitors, particularly tartrate, allow a distinction to be made between prostatic AP and 
other AP isoenzymes. Prostate and vaginal acid phosphatase can also be distinguished by using 
gel electrophoresis (Chapter 16).
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Figure  14.7 Chemical structures of acid phosphatase substrates. (a) α-Naphthyl phosphate, 
(b) thymolphthalein monophosphate, (c) phenyl phosphate, (d) 4-nitrophenyl phosphate, and (e) MUP.
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(a) (b) (c)

Figure 14.9 AP colorimetric assay. (a) A small amount of sample from the stain is transferred 
using a moistened cotton swab. (b) The substrate reagent is applied, followed by adding Fast Blue 
B reagent. (c) Purple coloration indicates a positive reaction. (© Richard C. Li.)
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Figure  14.8 A colorimetric acid-phosphatase assay. In this assay, α-naphthylphosphate is 
hydrolyzed by acid phosphatase to phosphate and α-naphthol. The α-naphthol is subsequently 
converted into a purple azo dye with a diazonium salt such as Fast Blue B salt. AP, acid 
phosphatase.
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14.2.1.2.2 Fluorometric Assays
Fluorometric methods are more sensitive than the colorimetric detection of AP and are used for 
semen stain mapping. AP catalyzes the removal of the phosphate residue on a 4-methylumbel-
liferone phosphate (MUP) substrate (Figure 14.11), a reaction that generates fluorescence under 
ultraviolet light. A piece of moistened filter paper, marked for proper orientation and identifica-
tion, is used for transferring the prostatic AP. The evidence to be tested, a garment for example, 
is covered by the filter paper. Gloved hands are used to press the filter paper onto the stained 
area, ensuring that the evidence is in close contact with the paper. The filter paper is lifted from 
the evidence and examined in a dark room using long-wave ultraviolet light to detect any back-
ground fluorescence, which is then marked on the paper. The paper can then be sprayed with 
MUP reagent in a fume hood. The AP reaction on the paper can be visualized immediately. Areas 
where semen is present can be visualized as fluorescent areas on the filter paper (Figure 14.12).

14.2.2 Confirmatory Assays
14.2.2.1 Microscopic Examination of Spermatozoa
The cells from a questioned stain on an absorbent material can be transferred to a microscope 
slide by extracting a small portion of a stain with water, followed by gentle vortexing. The sus-
pension is then transferred to a slide and evaporated at room temperature or fixed with low heat. 
Alternatively, it can be transferred by dampening the stain with water and rubbing or rolling it 
onto a microscope slide.

Figure  14.10 Photo of a colorimetric acid-phosphatase assay using α-naphthylphosphate as a 
substrate. (© Richard C. Li.)
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Figure 14.11 The principle of MUP assay for detecting acid phosphatase activity. In the presence 
of acid phosphatase, 4-methylumbelliferone phosphate (MUP) is hydrolyzed, forming phosphate 
and 4-methylumbelliferone (MU), which fluoresces. AP, acid phosphatase.
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Microscopic identification of spermatozoa provides the proof of a seminal stain. Histological 
staining can facilitate microscopic examination. The most common staining technique is the 
Christmas tree stain (Figure 14.13). The red component known as Nuclear Fast Red (NFR) is a 
dye used for staining the nuclei of spermatozoa in the presence of aluminum ions. The green 
component, picroindigocarmine (PIC), stains the neck and tail portions of the sperm. The acro-
somal cap and the nucleus stain pink-red, and the sperm tails and the midpiece stain blue-green. 
Epithelial cells, if present in the sample, appear blue-green and have red nuclei. Additionally, 
fluorescent detection utilizing SPERM HY-LITER Fluorescent Staining Kit can facilitate the 
identification of spermatozoa.

Laser capture microdissection (LCM) has been shown to be an effective technique for sepa-
rating spermatozoa from nonsperm cells (i.e., epithelial cells from the victim) on a glass slide 
(Figure 14.14). This technique involves using a thin layer of a thermosensitive polymer that is 
placed on the surface of an LCM cap. Once spermatozoa are identified on the slide under a 
microscope, a polymer-containing LCM cap is placed over the spermatozoa on the slide. An 
infrared laser melts the polymer and causes it to adhere only to the targeted spermatozoa. The 
spermatozoa are then lifted off the slide. This allows spermatozoa to be separated and placed 
into snap-cap tubes for forensic DNA analysis.

14.2.2.2 Identification of Prostate-Specific Antigen
Over the years, a number of methods have been utilized to detect PSA: immunodiffusion, 
immunoelectrophoresis, enzyme-linked immunosorbent assay (ELISA), and immunochro-
matographic assays. ELISA and immunochromatographic assays have been found to be the 
most sensitive methods (Chapter 11).

14.2.2.2.1 Immunochromatographic Assays
Commercially produced immunochromatographic kits such as the PSA-check-1 (VED-LAB, 
Alencon), Seratec® PSA Semiquant (Seratec Diagnostica, Göttingen), and One Step ABAcard 

Background
fluorescence

Semen
 stains

(a) (b) (c)

(d) (e) (f )

Figure 14.12 Fluorometric assay of acid phosphatase for locating semen stains. Evidence item 
(a) is closely covered by a piece of moistened filter paper (b) to allow transfer of a small amount of 
stain. The orientation of the paper is marked (c). The paper is lifted. The background fluorescence 
is marked under UV light (d). The filter paper is treated with MUP (e). The presence of fluorescence 
under ultraviolet light indicates semen stains (f). (© Richard C. Li.)
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PSA® (Abacus Diagnostics, California) are available. These devices utilize antihuman PSA anti-
bodies. In the ABAcard PSA® assay, a labeled monoclonal antihuman PSA antibody is con-
tained in a sample well, a polyclonal antihuman PSA antibody is immobilized on a test zone of 
a nitrocellulose membrane, and an antiglobulin that recognizes the antibody is immobilized on 
a control zone (Figures 14.15 and 14.16).

(a)

(b)

Figure 14.13 Human spermatozoa stained with Christmas tree stain. (a) Staining spermatozoa on 
a microscope slide and (b) stained spermatozoa. (© Richard C. Li.)

Figure 14.14 A microscopic device for fluorescent detection utilizing SPERM HY-LITER Fluorescent 
Staining Kit (left) and a laser-capture microdissection device for separating sperm cells from other 
types of cells (right). (© Richard C. Li.)
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Figure 14.16 Semen identification using an immunochromatic device (ABAcard PSA). The negative 
(left) and positive (right) results are shown. The “C” band indicates that the test is valid. The “T” 
band indicates the presence of human blood. The sample well is labeled as “S”. (© Richard C. Li.)
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Figure 14.15 Immunochromatographic assays for identification of PSA in semen. (a) In a sample 
well, PSA in a semen sample is mixed with labeled anti-PSA Ab. (b) The PSA binds to the labeled 
anti-PSA Ab to form a labeled Ab–PSA complex. (c) At the test zone, the labeled complex binds to 
an immobilized anti-PSA Ab to form a labeled Ab–PSA–Ab sandwich. (d) At the control zone, the 
labeled anti-PSA Ab binds to an immobilized antiglobulin and is captured at the control zone. Ab 
and PSA represent antibody and prostate-specific antigen, respectively. (© Richard C. Li.)



Forensic Biology, Second Edition

268

The assay is carried out by loading an extracted sample into the sample well. The antigen 
in the sample binds to the labeled antibody in the sample well to form an antigen–antibody 
complex. The complex then diffuses across the nitrocellulose membrane. At the test zone, the 
immobilized antihuman PSA antibody binds with the antigen–antibody complex to form an 
antibody–antigen–antibody sandwich. The ABAcard PSA® uses a pink dye that allows for the 
visualization of a positive test with a pink line at the test zone. In the control zone, unbound 
labeled antihuman PSA antibody binds to the immobilized antiglobulin. This antibody–anti-
globulin complex at the control zone also results in a pink line. The test is considered valid only 
if the line in the control zone is observed.

The presence of human PSA results in a pink line at both the test and control zones. The 
absence of human PSA produces a pink line in the control zone only. A positive result can 
appear within 1 min; a negative result is read after 10 min. However, the high-dose hook effect, 
an artifact that may cause false-negative results (Chapter 10), occurs when high quantities of 
seminal fluid are tested.

14.2.2.2.2 ELISA
The ELISA method can be used to detect PSA with anti-PSA antibodies. The most common 
method used in forensic serology is antibody sandwich ELISA, in which an antibody–antigen–
antibody sandwich complex is formed (Figure 14.17). The intensity of the signal can be detected 
and is proportional to the amount of bound antigen. The amount of PSA can also be quantified 
by comparing a standard with known concentrations. Although this method is specific and 
highly sensitive, it is time-consuming. Chapter 11 discusses the principle of ELISA in further 
detail.
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Figure  14.17 Use of ELISA for identification of PSA in semen. (a) Sample containing PSA is 
applied to polystyrene tubes in which anti-PSA Ab is immobilized. (b) The PSA binds to immobilized 
Ab to form a PSA–Ab complex. (c) A second anti-PSA Ab, specific for a different epitope of PSA, is 
added to form an Ab–PSA–Ab sandwich. (d) A labeled antiglobulin then binds to the Ab–PSA–Ab 
sandwich. The bound antiglobulin can be detected by various reporting schemes. Ab and PSA rep-
resent antibody- and prostate-specific antigen, respectively. (© Richard C. Li.)
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14.2.2.3 Identification of Seminal Vesicle–Specific Antigen
14.2.2.3.1 Immunochromatographic Assays
Commercially produced immunochromatographic kits include the RSID®-Semen test 
(Independent Forensics, Hillside, IL) and the Nanotrap Sg. In the RSID®-Semen assay, a labeled 
monoclonal anti-Sg antibody is contained in a sample well, and a second monoclonal anti-Sg 
antibody, to a different epitope of Sg, is immobilized on the test zone of the membrane. An anti-
globulin that recognizes the antibody is immobilized on a control zone (Figure 14.18).

The sample can be prepared by cutting a small portion of a stain or a swab and is extracted 
for 1–2 h in an extraction buffer (200–300 μL). Approximately 10% of the extract is removed 
and mixed with the running buffer. The assay is carried out by loading an extracted sample 
into the sample well. The antigen in the sample binds to the labeled anti-Sg antibody in the 
sample well to form a labeled antibody–antigen complex that then diffuses across the mem-
brane. At the test zone, the solid-phase anti-Sg antibody binds with the labeled complex to 
form a labeled antibody–antigen–antibody sandwich. The antigen in the sample produces a 
pink line at the test zone. In the control zone, unbound labeled anti-Sg antibody binds to the 
solid-phase antiglobulin. This labeled antibody–antiglobulin complex at the control zone also 
results in a pink line. The presence of Sg generates a pink line at both the test and control 
zones. The absence of Sg results in a pink line in the control zone only. Results may be read 
after 10 min.

Validation studies have revealed that the sensitivity of the RSID-Semen kit for detecting 
seminal fluid can be as low as a 5 × 104-fold dilution. Species specificity studies have shown no 
cross-reactivity with various animal species including ruminants and small mammals. Bodily 
fluid specificity studies have also shown that the assay is not responsive to human blood, saliva, 
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Figure 14.18 Immunochromatographic assays for identification of semenogelin (Sg) in semen. 
(a) In a sample well, Sg in a semen sample is mixed with labeled anti-Sg Ab. (b) Sg binds to the 
labeled anti-Sg Ab to form a labeled Ab–Sg complex. (c) At the test zone, the labeled complex 
binds to an immobilized anti-Sg Ab to form a labeled Ab–Sg–Ab sandwich. (d) At the control zone, 
the labeled anti-Sg Ab binds to an immobilized antiglobulin and is captured at the control zone. Ab 
represents antibody. (© Richard C. Li.)
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urine, sweat, fecal matter, milk, or vaginal secretions. The assay results are not affected by con-
dom lubricants or spermicides such as nonoxynol-9 and menfegol. However, the high-dose hook 
effect occurs when more than 3 μL of seminal fluid is tested.

14.2.2.3.2 ELISA
Identification of Sg for semen detection has also been carried out with ELISA. Anti-Sg antibod-
ies are utilized. An antibody–antigen–antibody sandwich complex is formed (Figure 14.19). The 
intensity of the colorimetric or fluorometric signals can be detected spectrophotometrically and 
is proportional to the amount of bound antigen. The amount of Sg can be quantified by compar-
ing a standard with known concentrations.

14.2.2.4 RNA-Based Assays
RNA-based assays (Chapter 11) have been developed to identify semen. The assays are based 
on the expression of certain genes in certain cell or tissue types. Thus, the techniques used in 
the identification of semen are based on the detection of specific types of mRNA expressed 
exclusively in spermatozoa and in certain cells of male accessory glands. These assays uti-
lize reverse transcriptase polymerase chain reaction (RT-PCR; see Chapter  7) methods to 
detect gene expression levels of mRNAs for semen identification. Table 14.1 lists the tissue-
specific genes utilized for semen identification. Compared to conventional assays used for 
semen identification, the RNA-based assay has higher specificity and is amenable to automa-
tion. However, one limitation is that the RNA is unstable due to degradation by endogenous 
ribonucleases.
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Figure 14.19 Use of ELISA for identification of semenogelin (Sg) in semen. (a) Sample containing 
Sg is applied to polystyrene tubes in which anti-Sg Ab is immobilized. (b) Sg binds to immobilized 
Ab to form a Sg–Ab complex. (c) A second anti-Sg Ab, specific for a different epitope of Sg, is added 
to form an Ab–Sg–Ab sandwich. (d) A labeled antiglobulin then binds to the Ab–Sg–Ab sandwich. 
The bound antiglobulin can be detected by various reporting schemes. Ab represents antibody. 
(© Richard C. Li.)
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15
Identification of Saliva

15.1 Biological Characteristics of Saliva
The human salivary glands produce 1.0–1.5 L of saliva daily. About 70% of saliva is produced 
from the submandibular salivary glands, 25% from the parotids, and 5% from the sublingual 
salivary glands (Figure 15.1). Although a continuous basal level of saliva secretion is maintained, 
a large amount of saliva is produced during eating. Saliva is largely water containing small quan-
tities of electrolytes, proteins, antibodies, and enzymes. The digestion of carbohydrates in the 
diet begins in the oral cavity, where amylase in the saliva breaks down carbohydrates such as 
starch. Thus, detecting amylase indicates the presence of saliva.

15.1.1 Amylases
Amylases are enzymes that cleave polysaccharides such as starches, which are composed of 
D-glucose units connected by α1→4 linkages. Starches contain two types of glucose polymers: 
amylose and amylopectin (Figure 15.2). Amylose consists of long, linear chains of glucose resi-
dues connected by α1→4 linkages. Amylopectin is highly branched and consists of linear chains 
of glucose residues connected by α1→4 linkages with the branch points connected by α1→6 
linkages. Both linear amylose and amylopectin can be hydrolyzed by amylase by cleaving the 
chains at alternate α1→4 linkages. Amylase cleaves off one maltose (two glucose units) at a time. 
However, the α1→6 linkages at the branch points are not cleaved by the amylase.

Two types of amylases are characterized. β-Amylases found in plant and bacterial sources 
cleave only at the terminal reducing end of a polysaccharide chain. The end of a chain with a 
free anomeric carbon (not involved in a glycosidic bond) is called the reducing end. Human 
α-amylases cleave at α1→4 linkages randomly along the polysaccharide chain.

Human α-amylases have two major isoenzymes (multiple forms that differ in their amino 
acid sequences). Human salivary α-amylase (HSA) is encoded by the Amy1 locus, synthesized 
at the salivary glands and secreted into the oral cavity. Human pancreatic α-amylase (HPA), 
encoded by the Amy2 locus, is synthesized by the pancreas and secreted into the duodenum 
through the pancreatic duct. The amino acid sequences of the HSA and HPA are highly homolo-
gous. Therefore, monoclonal antibodies against HSA also cross-react with HPA. However, HSA 
is inactivated by acids in the stomach, while most HPA is inactivated in the lower portions of the 
intestine, and some amylase activity remains in the feces.

Amylase activity is found in various bodily fluids including semen, tears, milk, perspiration, 
and vaginal secretions. Most amylase present in normal serum consists of HPA and HSA. The 
amylases are small molecules and can pass through the glomeruli of the kidney (Chapter 17). 
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Figure 15.1 Human salivary glands. (© Richard C. Li.)
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Thus, the amylase present in urine is derived from plasma. Amylase can be inactivated under 
boiling temperatures and strong acidic and alkaline conditions. Based on various studies, its 
stability varies from a few weeks to several months.

15.2 Analytical Techniques for Identification of Saliva
The use of alternate light sources facilitates the search for and the visual examination of saliva 
stains. The identification of saliva is largely based on detecting the presence of amylase in a sam-
ple. Two types of amylase assays can be utilized. The first type measures the enzymatic activity 
of total amylase. This type of assay cannot distinguish HSA from other amylases including HPA 
and nonhuman amylases, such as those from plants, animals, and microorganisms. The second 
type of assay, which includes direct detection of HSA proteins and RNA-based assays, is more 
confirmatory than enzymatic assays.

15.2.1 Presumptive Assays
15.2.1.1 Visual Examination
The lighting techniques used to search for semen stains can be utilized in searching for saliva 
stains. For example, a 470 nm excitation wavelength can be used with orange goggles to allow 
visualization of fluorescence. However, the fluorescence of a saliva stain is usually less intense 
than that of a seminal stain (Figure 15.3). Microscopic examination with proper histological 
staining can also be performed to identify the buccal epithelial cells, indicating the presence of 
a saliva stain (Figure 15.4).

15.2.1.2 Determination of Amylase Activity
15.2.1.2.1 Starch–Iodine Assay
Iodine (I2) is used to test for the presence of starch. The amylose in starch reacts strongly with 
iodine to form a dark blue complex, while amylopectin develops a reddish-purple color. In the 
presence of amylases, starch is broken down to mono- or disaccharides. Consequently, such 
colors do not develop when iodine is added.

Figure 15.3 Examining saliva stains using an ALS technique. (© Richard C. Li.)
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A common configuration of the method is the radial diffusion assay (Figure 15.5). An agar 
gel containing starch is prepared. A sample well is created by punching a hole in the gel and 
an extract of the questioned sample is placed into the well. If amylase is present in the sample, 
it diffuses from the sample well and hydrolyzes the starch in the gel. The gel is then stained 
using an iodine solution. A clear area in the gel indicates amylase activity, and the size of the 
clear area is proportional to the amount of amylase in the sample. A linear standard curve 

Figure 15.4 Buccal epithelial cells. (© Richard C. Li.)
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Figure 15.5 Radial diffusion assay for the identification of amylase. (a) Known amounts of amylase 
standards are applied to the well and allowed to diffuse. (b) The size of the clear area arising from 
amylase activity is plotted. The standard curve can be used to determine the amount of amylase in 
a questioned sample. (© Richard C. Li.)
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(in log scale) can be prepared using a series of standard amylases with known concentrations. 
The amount of amylase can be quantified by comparing the results with the standard curve. 
However, this assay is not specific to HSA and can produce false-positive results. Moreover, 
the quantities of amylase can be used for determining the amount of sample needed for Y-STR 
analysis (Chapter 19), which now can be determined by using Y-chromosome-specific quantita-
tive PCR assays (Chapter 6).

15.2.1.2.2 Colorimetric Assays
Dye-labeled amylase substrates such as dye-conjugated amylose or amylopectin are utilized. 
These substrates are not soluble in water. In the presence of amylase, the dye-containing moi-
eties are cleaved and are soluble in water to produce a color. The degree of coloration, which can 
be measured colorimetrically by spectrophotometric methods, is proportional to the amount 
of amylase in the sample. Most of these assays are not HSA specific, although their specificity 
can be tested by using inhibitors that preferentially inhibit HSA, such as α-amylase inhibitors 
derived from the seeds of the wheat plant, Triticum aestivum. These amylase activity assays are 
considered presumptive, which means they are not conclusive for the presence of saliva in a 
sample.

While many substrates are available, Phadebas reagent (Pharmacia) is usually used in foren-
sic laboratories. Produced in a tablet form, it is used to detect α-amylase in specimens for clinical 
diagnostic purposes. A small portion (approximately 3 mm2) of a sample is cut and placed in 
a tube and incubated for 5 min at 37°C. One Phadebas tablet is added to each tube and mixed. 
Samples are then incubated for 15 min at 37°C, and the reaction is stopped at an alkaline pH 
by the addition of sodium hydroxide. The amylase substrate is an insoluble blue dye conjugated 
to starch. Amylase hydrolyzes the substrate to generate a blue color that can be measured at 
620 nm using a spectrophotometer. The optical density of the supernatant is read and can be 
converted to amylase units by comparing to a standard curve.

The amylase assay can also be used for amylase mapping as a method of searching for possible 
saliva stains (Figures 15.6 and 15.7). These assays are based on the principle that amylase is water 
soluble and can be transferred from evidence to filter paper and then analyzed via colorimetric 
assay. This procedure is also referred to as a press test. The sensitivity of the method is similar to 
that of the test tube method.

The substrate can be prepared by evenly spraying the Phadebas reagent on a sheet of filter 
paper and allowing it to air-dry. The dried substrate-containing paper can be used immediately 
or stored until needed. To perform amylase mapping, a piece of paper is placed over the entire 
area to be tested (the item to be tested must be fairly flat to ensure good contact with the paper). 
The paper is dampened slightly by spraying with distilled water. An outline may be drawn on 
the paper to aid in locating stains. A piece of plastic wrap is placed on top to prevent the paper 
from drying during the assay, and a weight is applied to ensure close contact of substrate and 
evidence. The test is observed every minute for the first 10 min, and every 5 min thereafter up to 
40 min, when a positive reaction should appear as a light blue area.

The SALIgAE® kit (Abacus Diagnostics), another commercially available colorimetric assay, 
has been validated for saliva identification (Figure  15.8). Its manufacturer also produces the 
SALIgAE spray kit, which can be used for amylase mapping.

15.2.2 Confirmatory Assays
15.2.2.1 Identification of Human Salivary α-Amylase
15.2.2.1.1 Immunochromatographic Assays
Commercially produced immunochromatographic kits include the RSID®-Saliva kit (Independent 
Forensics). A labeled monoclonal anti-HSA antibody is contained in a sample well. A second 
monoclonal anti-HSA antibody is immobilized onto a test zone of a membrane, and an antiglobu-
lin that recognizes the antibody is immobilized onto a control zone (Figures 15.9 and 15.10).
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Saliva 
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(a) (b) (c)

Figure 15.7 Amylase mapping for saliva stains. (a) Amylase substrate is sprayed on a sheet of 
filter paper. (b) Substrate-containing paper is placed over the area to be tested. The orientation of 
the filter paper is marked to aid in locating the stain. (c) The filter paper is dampened by spraying it 
with water, and plastic wrap is placed on top to prevent the paper from drying. Blue color indicates 
a positive reaction. (© Richard C. Li.)
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Figure 15.6 Amylase colorimetric assay using Phadebas reagent. (a) A spot test for saliva and 
(b) amylase mapping result showing a saliva-stained area. N, a negative result; P, a positive result. 
(© Richard C. Li.)



15.2 Analytical Techniques for Identification of Saliva

283

A sample can be prepared by cutting out a small portion of a stain or a swab. Each sample 
is extracted for 1–2 h in 200–300 μL of an extraction buffer. Approximately 10% of the extract 
is removed and mixed with a running buffer. The assay is carried out by loading an extracted 
sample into the sample well where the antigen in the sample binds to the labeled anti-HSA anti-
body in the well to form a labeled antibody–antigen complex. The complex then diffuses across 
the membrane to the test zone, where the solid-phase anti-HSA antibody binds with the labeled 
complex to form a labeled antibody–antigen–antibody sandwich.

The presence of antigen in the sample results in a pink line at the test zone. In the control 
zone, unbound labeled anti-HSA antibody binds to the solid-phase antiglobulin. The labeled 
antibody–antiglobulin complex at the control zone also results in a pink line. The test is 

Figure 15.8 Saliva identification using SALIgAE reagent. P, a positive result; N, a negative result; 
S, a positive control. (© Richard C. Li.)
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Figure 15.9 Identification of saliva using immunochromatographic assays. P, a positive result; N, 
a negative result. (© Richard C. Li.)
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considered valid only if the line in the control zone is observed. The presence of HSA results 
in a pink line at both the test zone and the control zone, while the absence of HSA results in 
a pink line in the control zone only. A result can be read after 10 min.

The sensitivity of the RSID®-Saliva kit can be as low as 1 μL of saliva. Additionally, the assay 
is responsive to samples extracted from saliva stains on both smooth and porous surfaces. In 
terms of species specificity, the kit has no cross-reactivity with various animal species, includ-
ing monkeys (tamarin and callimico). As for bodily fluid specificity, it has also been shown that 
it is not responsive to human blood, semen, or urine. The high-dose hook effect, which cre-
ates an artifact that may cause false-negative results as described previously (Chapter 11), is not 
observed when up to 50 μL of saliva is tested. This method is rapid, specific, and sensitive and 
can be used in both laboratory and field analysis.

15.2.2.1.2 Enzyme-Linked Immunosorbent Assay (ELISA)
This method can be used to detect and to quantify a sample with the use of an anti-HSA anti-
body. The most common configuration in forensic serology is the antibody–antigen–antibody 
sandwich (Figure  15.11). ELISA utilizes reporting enzymes to produce colorimetric or fluo-
rometric signals. The intensity of the signal can be detected spectrophotometrically and is 
proportional to the amount of bound antigen. The amount of HSA can be quantified by com-
parison with a standard of known concentration. This method is specific and highly sensi-
tive in detecting HSA, but it is time-consuming. Chapter 11 discusses the ELISA principle in 
further detail.

Anti-HSA Ab

Bond anti-HSA Ab

Unbond anti-HSA Ab

Test zone Control zone

-S-S-

-S-S--S-S--S-S-
-S-S--S-S-

-S-S-

-S-S--S-S-
-S-S-

-S-S--S-S-

-S-S--S-S- -S-S-

-S-S--S-S- -S-S--S-S--S-S- -S-S-

HSA
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Figure 15.10 Immunochromatographic assay for the identification of HSA in saliva. (a) Sample 
containing amylases is loaded in a sample well. (b) Antigen binds to a labeled anti-HSA Ab to form a 
labeled Ab–HSA complex. (c) At the test zone, the labeled complex binds to an immobilized antihu-
man HSA Ab to form a labeled Ab–HSA–Ab sandwich. (d) At the control zone, the labeled anti-HSA 
Ab binds to an immobilized antiglobulin and is captured at the control zone. Ab, an antibody; HSA, 
human salivary α-amylase. (© Richard C. Li.)
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15.2.2.2 RNA-Based Assays
RNA-based assays (Chapter  11) have been developed recently for the identification of saliva. 
They are based on the expression of certain genes in certain cell or tissue types. Thus, the tech-
niques used in the identification of saliva are based on the detection of specific types of mRNA 
expressed exclusively in certain cells in the oral cavity. These assays utilize reverse transcriptase 
polymerase chain reaction (RT-PCR; see Chapter 7) methods to detect gene expression levels 
of mRNAs for saliva identification. Table 15.1 summarizes the tissue-specific genes utilized for 
saliva identification. Compared to conventional assays used for saliva identification, RNA-based 
assays present higher specificity and are amenable to automation. However, one limitation is 
that the RNA is unstable because of degradation by endogenous ribonucleases.
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-S-S--S-S-

-S-S-

-S-S--S-S-
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HSA
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Anti-HSA Ab 
(different epitope)

Labeled 
antiglobulin

Anti-HSA Ab

Figure 15.11 ELISA for identification of HSA in saliva. (a) Sample containing antigen is applied 
to polystyrene tubes where anti-HSA Ab is immobilized. (b) Antigen binds to immobilized Ab to 
form HSA–Ab complex. (c) Second anti-HSA Ab, specific for a different epitope of HSA, is added 
to form Ab–HSA–Ab sandwich. (d) Labeled antiglobulin then binds to the sandwich. The bound 
antiglobulin can be detected by various reporting schemes. Ab, an antibody; HSA, human salivary 
α-amylase. (© Richard C. Li.)

Table 15.1 Application of RT-PCR Assay for Saliva Identification

Gene Symbol Gene Product Description Further Reading

HTN3 Histatin 3 Histidine-rich protein 
involved in nonimmune 
host defense in oral 
cavity

Sabatini et al. (1993)

STATH Statherin Inhibitor of precipitation 
of calcium phosphate 
salts in oral cavity

Sabatini et al. (1990)

Source: Adapted from Juusola, J. and Ballantyne, J., Forensic Sci Int, 152, 1–12, 
2005.
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16
Identification of Vaginal Secretions 

and Menstrual Blood
The identification of vaginal secretions and menstrual blood is important for the investigation 
of sexual assault cases. Such identification can help to corroborate allegations of sexual assault. 
For example, in a sexual assault investigation, a stain was observed after examining the suspect’s 
clothing. Subsequently, forensic DNA analysis revealed that the DNA of the stain originated from 
the victim, establishing a link between the victim and the suspect. However, the defendant may 
assert that the victim’s DNA originated from a sweat stain as a result of casual contact and deny 
any criminal act. If vaginal secretions were found in the stain, the evidence has probative value to 
corroborate an allegation of a sexual act. Additionally, postcoital drainage stains on clothing or 
bedding are often recovered at crime scenes. These stains usually consist of a mixture of semen 
and vaginal secretions. In such cases, the presence of vaginal secretions in these stains indicates 
the occurrence of sexual intercourse. Sometimes, vaginal secretions can be transferred onto a 
perpetrator during a sexual assault. For example, the presence of vaginal secretions on a suspect’s 
genital area can indicate the occurrence of sexual intercourse. Furthermore, the presence of vagi-
nal secretions on an object can corroborate an allegation of vaginal rape with a foreign object.

If a sexual assault victim is in menses when an assault occurred, blood evidence, such as the 
victim’s bloodstains located on the suspect’s clothing, may be recovered at the scene. The defense 
may argue that the bloodstains resulted from an injury and deny that any sexual act occurred. 
In this case, the identification of menstrual blood would corroborate an alleged rape. Therefore, 
it is necessary to distinguish between peripheral and menstrual blood in investigations of sexual 
assault where blood evidence is found at the scene.

16.1 Identification of Vaginal Stratified Squamous Epithelial Cells
A normal human vagina is covered by the squamous mucosa, which is composed of stratified 
squamous epithelial tissue (Figure 16.1a). Lying under the squamous mucosa is the submucosa, 
which contains an abundance of connective tissue and capillaries. Below the submucosa is the 
muscularis, which is made up of smooth muscle.

The squamous mucosa consists of multiple layers of cells (Figure 16.1b). At the basal layer of 
the squamous mucosa, basal cells are anchored to the basement membrane that separates the 
squamous mucosa from the submucosa. The basal cells are small in size with relatively large 
nuclei and are highly proliferative. As the cells migrate up from the basal layer to the parabasal 
layer, the cells undergo differentiation. At the intermediate layer, the cells are flattened and their 
nuclei are compressed. As the epithelial cells reach the apical layer, the superficial layer, the cells 
are fully differentiated with small and dense nuclei.
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Vaginal epithelial cells do not accumulate keratin, which is different from skin cells (Chapter 4). 
The intermediate and superficial layer cells contain abundant glycogen in their cytoplasm. The 
presence of glycogen in these cells is an indication of normal development and the differentia-
tion of the vaginal epithelial cells. The apical surface of the vaginal squamous mucosa is usually 
covered by mucus that is secreted from glands that are located deep in the epithelium. The cells 
of the apical layers are eventually sloughed and are continuously replaced by the cells of deeper 
layers. When the lining of the vagina is swabbed during the collection of evidence, glycogenated 
cells with small numbers of parabasal cells are usually recovered (Figure 16.2). In addition to the 
vagina, glycogenated squamous epithelial cells are found in the linings of the oral cavity, phar-
ynx, esophagus, anus, and the apex of the urethra. The differentiation of the vaginal epithelial 
cells requires estrogen. However, in premenarche and postmenopausal women, estrogen levels 
are very low; thus, the vaginal epithelial cells only differentiate to the parabasal cells. Primarily, 
parabasal cells are found in specimens from these individuals.

16.1.1 Lugol’s Iodine Staining and Periodic Acid–Schiff Method
Lugol’s iodine solution, named after the French physician Jean Lugol, is originally used as an 
antiseptic that is applied to skin or tissue to prevent infection. In forensic applications, it is uti-
lized for the identification of glycogenated vaginal epithelial cells. The technique is based on the 

Squamous mucosa

Submucosa

(a)

(b)

Superficial layer

Intermediate layer

Parabasal layer
Basal layer

Figure 16.1 Histological structure of human vaginal tissues. (a) The squamous mucosa and the 
submucosa. (b) Multiple layers of cells in the squamous mucosa. (© Richard C. Li.)
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principle that iodine reacts with intracellular glycogen to exhibit a color. Glycogen is the principal 
storage form of glucose in animal and human cells and is found in the granules in the cytoplasm 
of the cells of many tissues. In addition to squamous epithelial cells, glycogen is also found in 
hepatocytes, which have the highest glycogen content, as well as muscle cells. Glycogen is a poly-
saccharide composed of D-glucose units. Similar to the amylopectin in plant cells (Chapter 15), 
glycogen is a branched polysaccharide consisting of linear and branched chains (Figure 16.3). The 
D-glucose residues of the linear chain are connected by α1→4 glycosidic bonds, while the branch-
ing points are connected by α1→6 glycosidic bonds. However, glycogen is more branched than 

Figure 16.2 Vaginal stratified squamous epithelial cells. (© Richard C. Li.)

Figure 16.3 Structure of glycogen. Glycogen is a highly branched polysaccharide composed of glu-
cose. Glycogen has a similar structure to amylopectin in starch (see Chapter 15). However, glycogen 
is more branched than starch. Additionally, glycogen contains a protein known as glycogenin at the 
center of its structure. (© Richard C. Li.)
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amylopectin. Branch points occur approximately every 10 glucose residues in glycogen while 
they occur every 25 glucose residues in amylopectin. Lugol’s stock solution is an aqueous solution 
of 5% iodine (I2) and 10% potassium iodide (KI). Potassium iodide allows the iodine to be soluble 
in water through the formation of the triiodide ion. For staining the vaginal epithelial cells, 5% 
of the stock solution is usually used as the working solution. Iodine atoms fit into the helices of 
glycogen to form a dark brown glycogen–iodine complex (Figures 16.4 and 16.5). Vaginal epithe-
lial cells can also be stained using the periodic acid–Schiff method. The cytoplasm of the vaginal 
epithelial cells is stained magenta, and the nucleus is stained purple.

(a) (b)

Figure 16.5 Epithelial cells stained with Lugol’s iodine solution. (a) Vaginal and (b) buccal epithe-
lial cells. (© Richard C. Li.)

Figure 16.4 Diagram of a glycogen–iodine complex. In the complex, the glycogen chain forms a 
helix structure with six monosaccharide residues (red) per turn. Iodine molecules (gray) fit in the 
helix to form the glycogen–iodine complex, exhibiting a color. (© Richard C. Li.)



16.2 Identification of Vaginal Acid Phosphatase

293

16.1.2 Dane’s Staining Method
Evidence containing skin, buccal, and vaginal epithelial cells is often recovered in forensic 
investigations, particularly in sexual assault cases. Thus, it is necessary to distinguish between 
these cells. Skin, buccal, and vaginal epithelial cells belong to stratified squamous epithelium. 
Differentiated skin epithelial cells are keratinized and are classified as keratinizing squamous 
epithelial cells, while buccal and vaginal epithelial cells are nonkeratinizing squamous epithelial 
cells. Additionally, the skin epithelial cells lose nuclei and other cellular organelles during dif-
ferentiation. In contrast, buccal and vaginal cells contain nuclei. Based on their morphology, it is 
possible to distinguish skin epithelial cells from buccal and vaginal epithelial cells. However, buc-
cal and vaginal cells are morphologically indistinguishable from each other. Although Lugol’s 
iodine solution and periodic acid–Schiff can stain vaginal epithelial cells, these stains cannot 
distinguish vaginal from other glycogenated epithelial cells in the oral mucosa and the urinary 
tract. Recently, Dane’s staining method has been developed to distinguish all three types of 
cells. Skin cells are stained red and orange; buccal cells are stained predominantly orange-pink 
with red nuclei; and vaginal cells are stained bright orange with orange nuclei (Figure 16.6).

16.2 Identification of Vaginal Acid Phosphatase
Acid phosphatases are a group of enzymes that are capable of hydrolyzing a variety of small 
organic phosphomonoesters under acidic conditions. To date, at least five different acid phospha-
tase isoenzymes have been identified in human tissues: erythroid acid phosphatase (encoded by 
the ACP1 gene), lysosomal acid phosphatase (encoded by the ACP2 gene), prostate acid phospha-
tase (encoded by the ACPP gene, also known as ACP3), macrophage acid phosphatase (encoded 
by the ACP5 gene), and testicular acid phosphatase (encoded by the ACPT gene). Human pros-
tatic acid phosphatase is found in large quantities in seminal fluid and is used as a biomarker for 
semen identification (Chapter 14). The prostatic acid phosphatase is a homodimer containing 
two identical subunits with a molecular weight of 50 kDa. Small amounts of acid phosphatase 
can be detected in vaginal fluid, which is produced in normal cervical epithelial cells. However, 
the molecular characteristics of vaginal acid phosphatase are still not known. Historically, vagi-
nal acid phosphatase has been used as a biomarker for the identification of vaginal secretions 
using acid phosphatase catalytic assays (Chapter 14). In sexual assault investigations, it is impor-
tant to distinguish vaginal acid phosphatase from prostate acid phosphatase originating from 
semen exposure. These two enzymes have identical molecular weights, enzymatic specificities, 
and responses to the same inhibitors. Nevertheless, vaginal and prostate acid phosphatases can 
be distinguished using agarose electrophoresis. Based on their electrophoretic mobility, bands 
of vaginal and prostate acid phosphatases can be separated. The prostate acid phosphatase 

(a) (b) (c)

Figure 16.6 Staining of epithelial cells with Dane’s method. The results obtained using methanol 
fixation followed by Dane’s staining on skin (a), buccal (b), and vaginal epithelial (c) cells are shown. 
The arrows indicate red nuclei in buccal and orange nuclei in vaginal cells. (From French, C.E., 
et al., Forensic Sci Int, 178, 1–6, 2008. With permission.)
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has higher electrophoretic mobility toward an anode (a positively charged electrode) than the 
vaginal acid phosphatase (Figure 16.7). Thus, the presence of vaginal acid phosphatase can be 
determined.

16.3 Identification of Vaginal Bacteria
Lactobacillus can be found in the respiratory, the gastrointestinal, and the urogenital tract of 
healthy humans and animals. Lactobacillus taxa are the predominant bacteria in the vagina of 
women of reproductive age, and they play an important role in protecting the host against inva-
sive pathogenic organisms. Lactobacillus consists of rod-shaped, nonmotile, and non-spore-
forming gram-positive bacteria (Figure  16.8). Since these bacteria survive on carbohydrates, 
Lactobacillus bacteria produce lactic acid. As a result, a low pH environment is established in 

Figure 16.8 Vaginal Lactobacillus bacteria (circled). (© Richard C. Li.)

S V SV

S V SV
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Figure  16.7 Distinguishing prostate and vaginal acid phosphatases using polyacrylamide gel 
electrophoresis. Bands of acid phosphatases are detected using 4-methylumbelliferyl phosphate 
(MUP). MUP is a substrate of acid phosphatases, resulting in a product that fluoresces in UV 
illumination (see Chapter  14). The prostate acid phosphatase has higher electrophoretic mobil-
ity toward an anode (a positively charged electrode) than vaginal acid phosphatase. S, semen; V, 
vaginal secretions; SV, mixture of semen and vaginal secretions; PAP, prostate acid phosphatase; 
VAP, vaginal acid phosphatase; MUP, 4-methylumbelliferyl phosphate; UV, ultraviolet illumination. 
(© Richard C. Li.)
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the lumen of the vagina, which restricts the growth of pathogenic organisms. Such vaginal lactic 
acid–producing bacteria were thought to be Lactobacillus acidophilus. In the 1980s, it was deter-
mined that L. acidophilus was not a single species, but actually a group of related species known 
as the L. acidophilus complex. The species of the complex can now be distinguished based on 
their DNA sequences. The most frequently occurring Lactobacillus species found in the vagina 
are L. iners, L. crispatus, L. gasseri, and L. jensenii. Among them, L. iners is the most common 
species of Lactobacillus in women. Lactobacillus can be identified based on the sequences of DNA 
markers such as the 16S rRNA gene and the intergenic spacer region between the 16S rRNA and 
23S rRNA genes (Chapter 11). In forensic applications, L. iners, L. crispatus, L. gasseri, and L. 
jensenii can be detected in vaginal secretions. Thus, the identification of Lactobacillus taxa can 
potentially be utilized for the forensic identification of vaginal fluid. However, the presence of 
Lactobacillus taxa is not specific enough to vaginal fluid. Some studies show that Lactobacillus 
taxa are present in semen while others show that Lactobacillus can be found in female urine. The 
openings of the female urogenital system are in close proximity; thus, it is possible to have par-
tially overlapping microbiota between the urine and vaginal secretions. Thus, the identification 
of multiple bacterial species, at least the four Lactobacillus species previously mentioned, should 
be carried out to distinguish these samples.

16.4 Outlook for Confirmatory Assays of Vaginal Secretions
The identification of the vaginal stratified squamous epithelial cells provides important proba-
tive evidence in forensic investigations. However, the existing methods described earlier can 
sometimes give false-negative or false-positive results. In some situations, these assays also cross-
react with other types of bodily fluids. Thus, none of these assays is confirmatory. A useful iden-
tification method for vaginal secretions should be able to distinguish vaginal secretions from 
other bodily fluids and should be easy to perform. For example, nondestructive confirmatory 
identification methods such as fluorescence spectroscopy and Raman spectroscopy (Chapter 11) 
can potentially be useful for the identification of vaginal secretions. Recently, the analysis of 
tissue-specific gene expression has been utilized for the identification of vaginal secretions. 
Using the reverse transcription polymerase chain reaction (RT-PCR) technique (Chapter 7), the 
mRNAs of the tissue-specific genes of vaginal epithelial cells can be detected. For example, 
two commonly used markers for vaginal secretion identification are MUC4 and HBD1. MUC4 
encodes a mucin protein that is a major component of vaginal mucus, and HBD1, the human 
β defensin 1, encodes a vaginal antimicrobial peptide. Both MUC4 and HBD1 are expressed in 
vaginal epithelial cells and are considered reliable markers of vaginal fluid. Additional mRNA 
and miRNA markers are described in Tables 16.1 and 16.2.

16.5 Menstruation
Menstruation is the periodic discharge of blood and the elimination of the degenerated lining 
of the endometrium from the uterus of nonpregnant women. From menarche to menopause, 
women may menstruate up to 400  times during their reproductive age. The uterus plays an 
important role in preparing the uterine endometrium for the possible implantation of a develop-
ing embryo. The linings of the uterus are composed of the myometrium and the endometrium. 
The myometrium consists of the muscle fibers of the uterus. The endometrium consists of the 
simple columnar epithelium and the stroma (Figure 16.9). The simple columnar epithelium is 
formed by single-layered elongated cells located at the apical surface of the endometrium. The 
stroma consists of connective tissues as well as spiral arteries. Spiral arteries are small arteries 
that ascend through the endometrium and form a coil-like structure, which supplies blood to 
the endometrium.
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16.5.1 Uterine Cycle
The endometrium can be divided into two zones: the functionalis and the basalis (Figure 16.10). 
The functionalis is the luminal part of the endometrium. It is the zone of cyclic changes in the 
endometrium and is shed during menstruation. The basalis is the basal part of the endometrium 
and is not shed during menstruation. This zone produces cells to regenerate the functionalis 
during the next cycle.

Table 16.2 miRNA Markers for Vaginal Secretions and Menstrual 
Blood Identification

Bodily Fluid miRNA Marker Sequence

Vaginal secretions miR124a UAAGGCACGCGGUGAAUGCC

miR372 AAAGUGCUGCGACAUUUGAGCGU

miR617 AGACUUCCCAUUUGAAGGUGGC

miR891a UGCAACGAACCUGAGCCACUGA

Menstrual blood miR214 UGCCUGUCUACACUUGCUGUGC

miR412 ACUUCACCUGGUCCACUAGCCGU

miR451 AAACCGUUACCAUUACUGAGUU

Source: Adapted from Hanson, E.K., Lubenow, H., and Ballantyne, J., Anal 
Biochem, 387, 303–314, 2009; Wang, Z., et al., Forensic Sci Int 
Genet, 7, 116–123, 2013.

Table 16.1 Representative Markers of mRNA-Based Assays for Vaginal 
Secretions and Menstrual Blood Identification

Biological Fluid Gene Symbol Description

Vaginal secretions CYP2B7P1 Cytochrome P450, family 2, subfamily B, 
polypeptide 7, pseudogene 1

DKK4 Dickkopf homolog 4

FUT6 Fucosyltransferase 6

HBD1 β Defensin 1

IL19 Interleukin 19

MUC4 Mucin 4

MYOZ1 Myozenin 1

SFTA2 Surfactant associated 2

Menstrual blood MMP7 Matrix metalloproteinase 7

MMP11 Matrix metalloproteinase 11

Source: Adapted from Bauer, M. and Patzelt, D., J Forensic Sci, 47, 1278–
1282, 2002; Hanson, E.K. and Ballantyne, J., Sci Justice, 53, 14–22, 
2013; Juusola, J. and Ballantyne, J., Forensic Sci Int, 152, 1–12, 
2005; Nussbaumer, C., Gharehbaghi-Schnell, E., and Korschineck, I., 
Forensic Sci Int, 157, 181–186, 2006.
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During the uterine cycle, repetitive physiological changes occur in the functionalis 
(Figure 16.10). The cycle is divided into three phases: the menstrual, proliferative, and secre-
tory phases. The first day of menstrual bleeding is considered the onset of the menstrual phase. 
During the menstrual phase, the functionalis degenerates and is sloughed off from the uterine 
wall and bleeding occurs, known as menses. During the proliferative phase, the functionalis 
begins regeneration in which the spiral arteries are proliferated. During the secretory phase, 
the spiral arteries are further developed and coiled. In the absence of pregnancy, a decrease in 
the progesterone level leads to the constriction of the spiral arteries. As a result, the functiona-
lis becomes ischemic (insufficient blood flow), leading to hypoxia (low levels of oxygen in tis-
sue). In addition, the activation of an enzymatic degradation process causes the destruction and 

(a) (b)

Epithelium

Stroma

Figure  16.9 Uterus endometrium. (a) The proliferative phase and (b) the menstrual phase. 
(© Richard C. Li.)
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Figure 16.10 Changes in the functionalis of the uterine mucosa during a uterine cycle. D, day. 
(© Richard C. Li.)
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shedding of the functionalis during menses. Menstrual fluid contains blood, the functionalis 
layer tissue, and mucus.

16.5.2 Uterine Endometrial Hemostasis
The cessation of menstrual bleeding is achieved by endometrial hemostasis that is initiated 
when injury occurs due to the shedding of the endometrium (Figure 16.11). Hemostasis begins 
with platelet activation and aggregation to form platelet plugs at the site of injury. Additionally, 
the blood coagulation cascade is activated to produce thrombin. Thrombin, a serine protease, 
converts soluble fibrinogen into fibrin. Fibrin, a protein involved in blood clotting, aggregates 
with the platelet plugs and leads to the cessation of bleeding by forming blood clots, known as 
thrombi. Under normal physiological conditions, uterine endometrial hemostasis is a balanced 
process between blood coagulation and clot dissolution to control blood loss and to prevent 
clot accumulation within the uterus. As a result, the balance of these two processes allows the 
removal of tissue fragments from the uterus cavity in order to reduce the risks of infection. 
Blood clots are prevented from accumulating during menstruation by forming low amounts 
of platelet plugs and synthesizing coagulation factor inhibitors that inhibit blood coagulation. 
Additionally, fibrinolysis is activated, during which thrombus is broken down by a protease 
known as plasmin. Plasmin cleaves fibrin, generating soluble degradation products. As a result, 
fibrinolysis can inhibit blood clot formation.

Site of injury Blood vessel lumen
Endothelium

Smooth muscle

Platelet plug

Fibrin-stabilized
platelet plug

Figure 16.11 Diagram of hemostasis. Hemostasis occurs at the site of injury of a blood vessel. A 
platelet plug is formed as a result of the aggregation of platelets. The plug is further stabilized by 
the formation of a fibrin clot over the platelet plug. (© Richard C. Li.)
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16.6 D-dimer Assay
During fibrinolysis, cross-linked fibrin is cleaved by plasmin, producing a degradation product 
known as D-dimer (Figure 16.12). Assays for D-dimer fragments have been utilized in the foren-
sic identification of menstrual blood. A number of different formats of D-dimer assays can be 
used. In an enzyme-linked immunosorbent assay (ELISA; Chapter 11), antibodies bind to the 
D-dimer antigens on the solid phase. The D-dimer–antibody complex is subsequently analyzed 
using an antibody-based detection system. This method is highly sensitive, but is time-consum-
ing. Latex agglutination assays are based on the interaction of antibodies and D-dimers that are 
located on carriers to form aggregates during the agglutination process (Chapter 11). However, 
the magnitude of the agglutination response is manually read and conclusions are based on sub-
jective judgments. Immunochromatographic assays (Chapter 11) utilize monoclonal antibodies 
specific to D-dimers, which have been developed recently (Figures 16.13 and 16.14). This immu-
nochromatographic assay is very specific, sensitive, and rapid, and can be completed within 
minutes. The immunochromatographic devices are portable, and thus can potentially be used 
at crime scenes. The D-dimer assays can positively identify menstrual blood samples. Although 
peripheral blood contains low levels of D-dimer, these assays do not show positive reactions 
with peripheral blood. Thus, menstrual blood can be distinguished from peripheral blood using 
D-dimer assays. However, postmortem blood also contains these D-dimers, which are detected 
by these assays. Although the detection of postmortem blood would complicate the interpreta-
tion of results, postmortem blood is not often encountered in sexual assault cases.
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Cross-linked
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Cross-linking
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D-dimer

Figure 16.12 The formation and the degradation of a fibrin polymer. The activation of coagu-
lation ultimately generates thrombin, which catalyzes the conversion of fibrinogen to fibrin by 
cleaving the fibrinopeptides (gray). A fibrin monomer contains an E domain and two D domains. 
The fibrin monomers are held together by noncovalent bonds (dotted red) between the D domains 
and E domain to form a fibrin polymer. Fibrin polymers are then covalently linked (solid red) to 
form a cross-linked fibrin polymer, which plays a role in forming clots. During fibrinolysis, plasmin 
cleaves the cross-linked fibrin at multiple sites giving rise to fibrin degradation products including 
D-dimer. (© Richard C. Li.)
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Figure 16.13 Immunochromatographic assays for the identification of D-dimer in menstrual blood. 
(a) In a sample well, D-dimer antigen in a menstrual blood sample is mixed with labeled anti-D-
dimer Ab. (b) The D-dimer binds to the labeled anti-D-dimer Ab to form a labeled Ab–antigen 
complex. (c) At the test zone, the labeled complex binds to an immobilized anti-D-dimer Ab to form 
a labeled Ab–antigen–Ab sandwich. (d) At the control zone, the labeled anti-D-dimer Ab binds to 
an immobilized antiglobulin and is captured at the control zone. Ab, antibody. (© Richard C. Li.)

Figure 16.14 Detecting D-dimer using immunochromatographic assays. The results obtained using 
the Clearview Simplify D-dimer devices (Alere, Cheshire, UK) on menstrual (top) and peripheral 
blood (bottom) are shown. A positive result (arrow) indicates the presence of D-dimer. (From Baker, 
D.J., Grimes, E.A., and Hopwood, A.J., Forensic Sci Int, 212, 210–214, 2011. With permission.)
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16.7 Lactate Dehydrogenase Assay
Lactate dehydrogenase (LDH) is an enzyme that plays an important role in glycolysis. In 
humans, LDH catalyzes the reversible reduction of pyruvate into lactate when the amount of 
oxygen is limited. LDH is a tetrameric enzyme consisting of three different types of subunits. 
The A subunit, also known as the M subunit, is encoded by the LDHA gene and is primar-
ily expressed in skeletal muscle. The B subunit, also known as the H subunit, is encoded by 
the LDHB gene and is primarily expressed in cardiac muscle. The C subunit, encoded by the 
LDHC gene, is expressed restrictively in the testes. LDHs are found in various human tis-
sues. Five isoenzymes can be found in blood (Figure 16.15). LDH1 consists of four identical 
B subunits; LDH2 consists of one A and three B subunits; LDH3 consists of two A and two B 
subunits; LDH4 consists of three A and one B subunits; and LDH5 consists of four identical 
A subunits. The five isoenzymes can be separated using electrophoresis (Figure 16.16) and 
detected using a colorimetric assay (Figures 16.17 and 16.18). According to their electropho-
retic mobility, five bands can be identified. LDH1 has the highest electrophoretic mobility 
(toward an anode that is a positively charged electrode) and LDH5 has the lowest electropho-
retic mobility. In peripheral blood, LDH1, 2, and 3 are the predominant forms of the isoen-
zymes and LDH4 and 5 are the minor forms of the isoenzymes. In contrast, LDH4 and 5 are 
consistently the predominant isoenzymes in menstrual blood, while the amounts of LDH1, 
LDH2, and LDH3 vary. Thus, menstrual blood can be distinguished from peripheral blood. 
LDH was historically used as a marker for the forensic identification of menstrual blood.

B B

B B B B B

B BBA A A A A

A AAA

LDH1 LDH2 LDH3 LDH4 LDH5

A

Figure 16.15 Isozymes of lactate dehydrogenase. Human lactate dehydrogenases are composed 
of four subunits. Five types of isozymes with their subunits are shown. A, LDH A subunit; B, LDH 
B subunit.
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Figure  16.16 Electrophoretic separation of lactate dehydrogenase (LDH) isozymes. Extracted 
blood samples are loaded onto a cellulose acetate membrane. Electrophoresis is then carried out. 
Separated bands of LDH isozymes are detected using a colorimetric assay (see Figure 16.15). M, 
menstrual blood; P, peripheral blood. (© Richard C. Li.)
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16.8 RNA-Based Assays
Matrix metalloproteinase (MMP) genes are considered tissue-specific markers for human 
endometrium tissues. MMPs are zinc-dependent endopeptidases that degrade extracellular 
matrix components. Additionally, they cleave other proteins such as cytokines, chemokines, 
and growth factors. The extracellular matrix (ECM) is the extracellular space of tissue that 
is filled by macromolecules such as collagens, laminins, fibronectins, and proteoglycans. The 
ECM can be divided into two categories: the interstitial matrix and the basement mem-
brane. The interstitial matrices are located in the intercellular spaces. The basement mem-
branes are thin layers of macromolecule fibers that usually lie under the epithelium and the 
endothelium. Both the interstitial matrices and the basement membranes provide structural 
support to the cells. It is proposed that MMPs play an important role in the degradation of 
ECM, leading to the destruction of endometrium tissues during the uterine cycle. To date, 
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Figure 16.18 The reduction and oxidation of Meldola’s Blue. Meldola’s Blue is an electron carrier, 
which transfers hydrogen atoms (coupled to electron transfer).
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Figure 16.17 Detecting LDH activity using a colorimetric assay forming a colored dye. At the start 
of a cascade reaction, the LDH catalyzes the conversion of lactic acid to pyruvic acid. Nicotinamide 
adenine dinucleotide (NAD+) is then reduced to NADH/H+. Subsequently, Meldola’s Blue (MB; 
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purple formazan dye.



Bibliography

303

a total of 23 MMPs, divided into five subgroups, have been found in humans. The most 
commonly used markers for the forensic identification of menstrual blood are MMP7 and 
MMP11 (Table 16.1).

Many MMPs are expressed in human endometrium throughout the uterine cycle. The pat-
terns of the MMP gene expressions are correlated with their functions in endometrium tissue 
breakdown during menstruation. MMP7 is predominantly expressed in epithelial cells, while 
MMP11 is expressed in the stromal cells of the endometrium. Both MMP7 and MMP11 mRNA 
expressions are elevated at the menstrual phase and remain at high levels during the prolifera-
tive phase. It is also known that MMPs’ mRNA may be elevated in postpartum, wound healing, 
and metastatic cancer conditions, which may potentially lead to a false-positive identification of 
menstrual blood.

In menstrual blood samples, among all of the MMP genes tested, MMP11 is the most sensi-
tive and specific marker for distinguishing menstrual blood from peripheral blood. Using the 
RT-PCR technique (Chapter 7), MMP11 mRNA can be detected in menstrual blood from the 
first to the eighth day of menstruation but it is absent in peripheral blood and vaginal secretions. 
Therefore, MMP11 can be used as a marker for the identification of menstrual blood. Likewise, 
MMP7 is also a useful marker for menstrual blood identification. However, the MMP7 mRNA 
level in menstrual blood is less than that of MMP11. Additional markers such as miRNA mark-
ers for menstrual blood identification are included in Table 16.2.
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17
Identification of Urine, Sweat, 

Fecal Matter, and Vomitus

17.1 Identification of Urine
The identification of the presence of urine is useful for the forensic investigation of an alleged 
sexual assault and harassment involving urination. More importantly, the identification of urine 
stains can aid in the investigation of homicides involving either ligature or manual strangula-
tion. In these incidents, strangulation victims often involuntarily excrete urine prior to death. 
The locations of urine stains at the crime scene provide useful information to determine the site 
where the violence has occurred.

17.1.1 Urine Formation
In humans, the urinary excretory system eliminates soluble toxic wastes that are cellular meta-
bolic by-products. The urinary system consists of the kidney, the ureter, the urinary bladder, and 
the urethra (Figure 17.1). The formation of urine takes place in the kidneys and, in particular, in 
the nephrons. The nephron is the basic structural and functional unit of the kidney (Figures 17.2 
and 17.3). Each nephron is composed of a glomerulus, a Bowman’s capsule, and a renal tubule. 
The glomerulus is formed by a network of capillaries and is surrounded by a Bowman’s capsule. 
Filtration is the first step in urine formation. As blood flows through the glomeruli, much of 
its fluid, except cells and large molecules, is filtered through the capillaries into the Bowman’s 
capsule. The glomerular filtrate, the preliminary form of urine, consists of water, salts (largely 
sodium and potassium ions), glucose, and waste products such as urea. The filtrate is then passed 
through the renal tubule where reabsorption occurs. During the reabsorption process, water, 
glucose, nutrients, and ions such as sodium are reabsorbed back into the blood. The last process 
of urine formation is secretion. Secretion occurs at the distal and the collecting tubules of the 
nephron where ions (such as hydrogen and potassium ions), ammonia, and certain metabolites 
are secreted from the blood into the lumen of the renal tubule to be eliminated in the urine. The 
urine is drained from the kidneys through the ureters and is stored in the bladder before it is 
finally excreted through the urethra.

Urine is an aqueous solution consisting largely of water. Urea is the most abundant waste 
product in urine, resulting from the elimination of ammonia that is produced from the meta-
bolic process of amino acids. The average urea concentration in human urine is approximately 
9 g/L. Other major components are creatinine, uric acid, and ions such as phosphate, sulfate, 
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chloride, sodium, and potassium. Healthy individuals also excrete a small amount of protein. 
Urine has a characteristic yellow color. Subsequent to excretion from the body, urine acquires 
an odor that results from the ammonia that is released from the breakdown of urea by bacteria.

17.1.2 Presumptive Assays
In forensic identification, urine stains can be located by visual examination based on the char-
acteristic yellow color of urine and the detection of the distinctive odor of urine stains. Under 
alternative light sources, urine stains emit a fluorescent light that facilitates the locating of urine 
stains in clothing and bedding. Chemical analysis can be carried out to detect the major inor-
ganic anions in urine such as phosphate and sulfate as well as the major organic compounds 
in urine such as urea, creatinine, and uric acid. These assays are summarized in Table  17.1. 
However, these assays are not specific to urine. Other bodily fluids, such as sweat, also contain 
these chemical components.

17.1.2.1 The Identification of Urea
The para-dimethylaminocinnamaldehyde (DMAC) assay is simple and rapid and is the most 
commonly used presumptive assay for the forensic identification of urine stains (Figure 17.4). 
The DMAC assay can be performed using two different methods: the colorimetric and the fluo-
rometric methods (Figure 17.5).

In the colorimetric method, a portion of a stain (~1 cm2) is cut and is extracted with 1 mL 
of distilled water. The extraction is transferred onto a piece of filter paper and is allowed to dry. 
One drop of 0.1% DMAC solution is then added to the filter paper. DMAC reacts specifically 
with urea, if present, producing a pink-colored (or magenta-colored) product. DMAC does not 
react with creatinine, ammonia, or uric acid. The appearance of a pink color within 30 min after 
applying the DMAC reagent is considered a positive reaction. No color change within 30 min is 
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considered a negative reaction. However, this method is not specific to urine, as other bodily flu-
ids such as saliva, semen, sweat, and vaginal secretions can also give positive reactions. A diluted 
DMAC solution, from 0.1% to 0.05%, can maintain appropriate sensitivity to urine stains and 
minimize false-positive reactions caused by the detection of low levels of urea that are present 
in other bodily fluids.

The fluorometric method is useful for locating urine stains on large pieces of evidence such as 
clothing and bedding (Figure 17.6). Additionally, this method can detect patterns of urine stains 
(Figure 17.7), which can be useful in crime scene reconstructions. In the fluorometric method, 
the evidence to be examined, such as a garment, is covered by a sheet of filter paper that has been 
preabsorbed with the DMAC solution. The evidence and the filter are then wrapped together in 
a sheet of aluminum foil and are left overnight in a press, ensuring that the evidence is in close 
contact with the filter paper. Alternatively, the layers can be heated for 30 s using an iron. Using 
a light source at 473–548 nm, the DMAC-treated urine stain fluoresces. The fluoresced stain is 
best observed with a 549 nm filter. However, colored fabrics interfere with the assay since dyes 
and pigments can inhibit the fluorescence.

In addition to the DMAC test, the identification of urea that is present in urine stains can 
be carried out by urease assays. Ureases catalyze the breakdown of urea, thus releasing ammo-
nia and carbon dioxide (Figure 17.8). The ammonia is detected using an acid-base indicator, 
bromthymol blue, which exhibits a blue color. Alternatively, the ammonia can be detected by 
manganese and silver nitrates, which exhibit a black color. Additional assays such as micro-
scopic crystal and chromatographic assays are summarized in Table 17.1.

H3C H3C

H3CH3C
N

H
DMAC Urea

H2N
H2O

NH2

O
N N

O

H
NH2

O +

Figure 17.4 Chemical reaction of DMAC assay.

(a) (b)

Figure 17.5 Positive reaction of DMAC assay of a urine stain. (a) Colorimetric and (b) fluorometric 
method. (© Richard C. Li.)
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Urine
stains(a) (b) (c) (d)

Figure 17.6 Fluorometric DMAC assay of urine stains. Evidence item (a) is closely covered by a 
piece of moistened filter paper containing DMAC. The orientation of the paper is marked (b). The 
layers are pressed to allow the transfer of a small amount of the stain onto the paper and are heated 
using an iron (c). The paper is then lifted. The DMAC-treated urine stain fluoresces under a light 
source at 473–548 nm (d). (© Richard C. Li.)

Figure 17.7 Fluorometric DMAC enhancement of a footwear impression in urine on white cotton 
fabric. From left to right: urine impression, DMAC-treated urine stains under white light, and DMAC-
treated urine stains using an excitation light source. (From Farrugia, K.J., et al., Forensic Sci Int, 
214, 67–81, 2012. With permission.)
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Figure 17.8 Biochemical reaction of urease.



Forensic Biology, Second Edition

314

17.1.2.2 Identification of Creatinine
Creatinine is produced during normal muscle cell metabolism (Figure 17.9). During this metab-
olism, phosphocreatine, an energy-storing molecule in muscle cells, breaks down to form cre-
atine. Creatine is then metabolized to creatinine, which is released from the muscle cells into the 
blood. Serum creatinine is largely filtrated by the renal glomeruli. A small amount of creatinine 
is secreted by the renal distal tubules. The amount of creatinine excreted in urine is proportional 
to the muscle mass of an individual. However, creatinine is not only present in urine. It is also 
present in other bodily fluids such as blood and semen.

The creatinine present in urine can be detected using the Jaffe color test (Figure 17.10). In 
this test, picric acid is used to convert creatinine, under alkaline conditions, to form creatinine 
picrate, which is a bright red product. Additional tests for urine creatinine are summarized in 
Table 17.1. Recently, a Uritrace device (Abacus Diagnostics) has been made commercially avail-
able for the detection of creatinine.
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Figure 17.9 Schematic view of the formation of creatinine.
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Figure 17.10 Chemical reaction of Jaffe’s assay.
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17.1.3 Confirmative Assays
17.1.3.1 Identification of Tamm–Horsfall Protein
Tamm–Horsfall protein (THP), also known as uromodulin, is the most abundant protein in 
urine, and accounts for 40% of the urine proteins. THP is exclusively synthesized in the epithe-
lial cells of Henle’s loop. THP is secreted from the apical plasma membrane of the epithelial cells 
into the lumen. Under physiological conditions, an adult excretes 20–100 mg of THP into urine 
daily. The biological function of THP is not fully understood. It is speculated that it prevents the 
body from contracting urinary tract infections and from forming renal stones.

THP is a urine-specific biomarker for forensic urine identification. It can be detected using 
an enzyme-linked immunosorbent assay (ELISA). More recently, it can be detected using an 
immunochromatographic assay, RSID-Urine, which utilizes a polyclonal rabbit antibody that is 
specific to THP (Figures 17.11 and 17.12). This test is rapid and simple and thus can be used as a 
screening test in laboratories and as a field test at crime scenes to identify urine. The detection 
limit of RSID-Urine for THP is 0.5 μL of urine. Although the sensitivity of RSID-Urine is lower 
than that of ELISA detection of THP, it is sufficient for forensic applications. These methods are 
specific to THP that is present only in urine while no detection is found in other bodily fluids 
such as plasma, saliva, semen, vaginal fluid, or sweat.

17.1.3.2 Identification of 17-Ketosteroids
In humans, urine contains derivatives of 17-ketosteroids such as androsterone, dehydroepi-
androsterone (DHEA), and etiocholanolone. Androsterone is a steroid hormone with a weak 
potency of testosterone. DHEA is a metabolic intermediate in the biosynthesis of the gonadal ste-
roids. DHEA also has a potential function as a steroid hormone. Etiocholanolone is a metabolite 
of testosterone. These compounds are present in urine as conjugates, in which 17-ketosteroids 

Anti-THP Ab

THP

(a) (b) (c) (d)

Bond anti-THP Ab

Unbond anti-THP Ab
Test zone Control zone

-S-S-

-S-S- -S-S-

-S-S-

-S-S--S-S-

-S-S- -S-S-

-S-S--S-S- -S-S-
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-S-S-
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-S-S-

-S-S- -S-S--S-S- -S-S-

-S-S-

-S-S-

Figure 17.11 Immunochromatographic assays for the identification of THP in urine. (a) In a sample 
well, THP in a urine sample is mixed with labeled anti-THP Ab. (b) The THP binds to the labeled 
anti-THP Ab to form a labeled Ab–THP complex. (c) At the test zone, the labeled complex binds to 
an immobilized anti-THP Ab to form a labeled Ab–THP–Ab sandwich. (d) At the control zone, the 
labeled anti-THP Ab binds to an immobilized antiglobulin and is captured at the control zone. Ab, 
antibody; THP, Tamm–Horsfall protein antigen. (© Richard C. Li.)
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are modified in the liver through glucuronidation and sulfation. In glucuronidation, glucuronic 
acids are added to 17-ketosteroids while in sulfation, sulfates are transferred to 17-ketosteroids. 
As a result, these conjugates, containing charged moieties, are more water soluble than the non-
conjugated 17-ketosteroids. Thus, they are excreted into urine to be eliminated from the body. 
The five major components of the 17-ketosteroid conjugates present in human urine are andros-
terone glucuronide, androsterone sulfate, DHEA sulfate, etiocholanolone glucuronide, and etio-
cholanolone sulfate (Figure 17.13). Thus, the analysis of 17-ketosteroid conjugates in urine stains 
is useful for the identification of human urine stains. These five 17-ketosteroid conjugates can be 
identified using liquid chromatography–mass spectrometry (LC-MS). However, some of these 
17-ketosteroid conjugates are also detected in serum. Therefore, the presence of all five conju-
gated 17-ketosteroids in a sample is required to identify a urine stain. Additionally, the profiles 
of the 17-ketosteroid conjugates are human specific and are distinguishable between humans 
and animals.

17.2 Identification of Sweat
Sweat is the least common bodily fluid analyzed in forensic laboratories compared with others 
that have been mentioned in previous chapters. However, sweat identification is still useful for 
forensic investigations. For example, forensic DNA analysis allows the generation of DNA pro-
files from trace biological evidence such as fingerprints. Identifying sweat can be important for 
the analysis of these types of evidence.

17.2.1 Biology of Perspiration
Humans have two types of secretory sweat glands: the eccrine and the apocrine sweat glands 
(Figure 17.14). Eccrine sweat glands are distributed almost all over the body and are controlled 
by the sympathetic nervous system. Eccrine sweat glands play a role in regulating body tem-
perature. When the body temperature rises, eccrine sweat glands secrete a watery sweat to 
the skin’s surface where heat is carried away through the evaporation of the sweat to main-
tain normal body temperature. In humans, apocrine sweat glands, which are associated with 
hair follicles, are usually restricted to the underarm and genital areas and are controlled by 
emotional stress. Apocrine sweat glands are inactive until puberty. This type of sweat gland 
secretes an oily sweat that is odorous after being processed by skin bacteria. The majority of 
sweat evidence that is analyzed in forensic laboratories is sweat stains secreted from eccrine 
glands. Sweat contains water, minerals, lactate, and urea. Its biochemical composition varies 

Figure 17.12 Results obtained using immunochromatographic assays (RSID™-Urine; Independent 
Forensics, Lombard, IL) for the identification of THP in urine. From left to right: negative control, 
undiluted, 1:10 diluted, and 1:100 diluted urine samples. A visible blue line at the test (T) zone 
and control (C) zone indicates a positive result. The blue line at the control zone only indicates a 
negative result. (From Akutsu, T., Watanabe, K., and Sakurada, K., J Forensic Sci, 57, 1570–1573, 
2012. With permission.)
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among individuals and their physical activities. Sweat contains low levels of constituents that 
are also present in other bodily fluids such as urine. Thus, it has been considered a difficult 
bodily fluid to identify.

17.2.2 Sweat Identification Assays
Sweat evidence has been analyzed using presumptive assays (Table  17.1) such as elemental 
analysis using scanning electron microscopes coupled with energy dispersive x-ray spectros-
copy in the detection of lactic acid. Since sweat contains many inorganic and organic com-
pounds that are also present in other bodily fluids, these assays are not specific to sweat. Raman 
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microspectroscopy is potentially useful for the identification of sweat for forensic purposes, 
which is based largely on the profiles of lactate, lactic acid, urea, and single amino acids in urine.

Recently, dermcidin has been identified as a potential biomarker of human sweat. Dermcidin 
belongs to a class of human antimicrobial peptides of the innate immune defense system and 
plays an important role in protecting epithelial barriers from infections. Dermcidin, specifically 
expressed in eccrine sweat glands (Figure 17.15), is secreted into the sweat and is transferred to 
the epidermal surface. In forensic applications, dermcidin can potentially be utilized as a bio-
marker for the confirmatory assay of sweat identification. The detection of dermcidin in sweat 
stains can be performed using ELISA assays utilizing antibodies specific to human dermcidin. 
This method is highly sensitive and is able to detect dermcidin in sweat samples that are diluted 
10,000-fold. Dermcidin is encoded by the DCD gene. Its mRNA can be detected using reverse 
transcription polymerase chain reaction (RT-PCR) assays (Chapter  7) that can detect DCD 
mRNA in 10 μL of sweat sample. Dermcidin assays are also specific to sweat as dermcidin is not 
detected in other bodily fluids such as semen, saliva, and urine.

17.3 Identification of Fecal Matter
The examination of feces has been used in criminal investigations for over a century. 
Specifically in 1948, a burglary case was reported using fecal analysis to link the shoes of a 
suspect to a crime scene. One of the aspects of fecal analysis is to determine a common origin 
of the reference sample and the fecal evidence, thus potentially linking a suspect to a crime 
scene. Today, the individual characteristics of a fecal sample can be effectively determined 
using forensic DNA analysis of sloughed intestinal epithelial cells that are present in fecal 
matter. The identification of fecal matter is valuable in providing important information for 
a criminal investigation. For example, the presence of fecal matter may corroborate a sexual 

Sebaceous
gland

Sweat
pore

Hair

Ep
id

er
m

is
D

er
m

is
Su

bc
ut

is

Eccrine
sweat gland

Follicle
and root

Apocrine
sweat gland

Adipose
tissue

Figure 17.14 Diagram of the human eccrine and apocrine sweat glands. (© Richard C. Li.)
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assault involving sodomy, assault with fecal matter, vandalism, and burglary during which 
the perpetrator defecated at the scene.

17.3.1 Fecal Formation
Feces are a type of waste matter that is the direct result of food that has been processed by the 
digestive system (Figure 17.16). Human feces contain undigested foodstuffs, sloughed intestinal 
epithelial cells, intestinal bacteria, bile pigments, electrolytes, and water. Feces are formed in 
the intestines during the last phase of digestion. Feces first enter the colon in liquid form. Most 
of the nutrients are absorbed on the surface area of the small intestine. In the large intestine, 
water, sodium, and chloride are absorbed on the surface of the lumen. The remaining luminal 
contents are converted into feces. Food stays for approximately 2–6 h in the stomach. It takes 
an additional 3–5 h to travel through the small intestine and 12–24 h to travel through the large 
intestine.

17.3.2 Fecal Matter Identification Assays
A fecal analysis includes macroscopic and microscopic examination, chemical tests, and fecal 
bacterial identification.

(a)

(a)

Figure 17.15 Localization of the dermcidin peptide in the sweat glands. Skin tissue sections are 
treated with a dermcidin antibody and stained. (a) Both the eccrine and apocrine sweat glands 
are shown. Only cells of the eccrine gland in the skin express dermcidin (brown stained). Arrows: 
eccrine sweat glands. Arrowheads: apocrine sweat glands. Scale bar: 100 μm. (b) Close-up view of 
the eccrine gland. The presence of the dermcidin peptide is observed (brown). Scale bar: 10 μm. 
(From Sagawa, K., et al., Int J Legal Med, 117, 90–95, 2003. With permission.)
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17.3.2.1 Macroscopic and Microscopic Examination
The color and odor of human feces are useful characteristics for fecal identification. The nor-
mal brown color of feces primarily results from the presence of urobilinoids, which are heme 
catabolic by-products. The characteristic odor of feces is caused by the metabolic by-products of 
the intestinal bacterial flora. Indole, skatole, and hydrogen sulfide are the compounds that are 
responsible for the odor of feces.

When fecal stains are analyzed, the microscopic examination of the feces can be performed 
on an aliquot of fecal suspension. The presence of characteristic undigested foodstuffs can 
indicate human feces. Fecal matter can be transferred from samples of clothing by scraping 
with a sterile stainless steel spatula. The fecal matter is then hydrated in 6% formalin solution 
for 24–48 h prior to microscopic examination. Undigested foodstuffs such as vegetable frag-
ments and meat fibers are often present in human feces. Vegetable fragments (Figure 17.17) 
are often undigested vegetable dermal tissues that cover and protect the plant and fragments 
of vascular tissues that play roles in transporting water and nutrients throughout the plant. 
The types of vegetables can be identified by comparing the observed fragments with known 
plants. Meat fibers (Figure 17.18) are undigested animal skeletal muscle fibers. These fibers 
have characteristic striations, usually rectangular in shape, that are used for comparison with 
known animal tissues.

Gallbladder

Liver

Bile duct

Pancreatic duct

Cecum

Appendix

Ileum Rectum

Colon

Jejunum

Duodenum

Pancreas

Stomach

Cystic duct
Hepatic duct

Esophagus

Figure 17.16 Diagram of the human digestive system. The esophagus, stomach, liver, gallblad-
der, pancreas, small intestine (duodenum, jejunum, and ileum), and large intestine (cecum, colon, 
appendix, and rectum) are shown. (© Richard C. Li.)
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Figure 17.18 Cattle meat fibers. (© Richard C. Li.)

Figure 17.17 Scallion vascular tissue (top) and dermal tissue (bottom). (© Richard C. Li.)
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17.3.2.2 Urobilinoids Tests
The forensic analysis of fecal matter often involves the identification of fecal stains on swabs and 
clothing from which small amounts of sample may be available. Chemical tests can be useful 
for the analysis of fecal stains. By far the most common chemical test performed on feces is the 
detection of urobilinoids. Urobilinoids, including urobilin and stercobilin, are generated from 
the degradation of heme and are excreted into feces.

The average lifetime of erythrocytes is approximately 3–4 months. Erythrocytes are continu-
ously undergoing hemolysis in which erythrocytes are naturally broken down and are usually 
processed in the reticuloendothelial system of the spleen. Hemoglobin is released daily during 
the hemolysis process and is degraded into heme, globin, and iron. Other sources of heme are 
derived from the degradation of erythrocyte precursors in bone marrow and other heme-con-
taining proteins such as myoglobin and cytochromes. In the peripheral tissues, heme undergoes 
catabolism to form bilirubin (Figures 17.19 and 17.20). Bilirubin is further converted to urobilino-
gen in the intestine. A portion of urobilinogen is reduced to stercobilinogen. In the large intes-
tine, the spontaneous oxidation of urobilinogen and stercobilinogen results in the formation of 

Urobilinogen

Bilirubin
glucuronides

Heme

Biliverdin

Bilirubin

Stercobilinogen

StercobilinUrobilin

Figure 17.19 The formation of urobilinoids. Aged erythrocytes are disposed in the spleen, releasing 
hemoglobin that is broken down to heme. The heme is converted to biliverdin and is subsequently 
reduced to bilirubin. The bilirubin is then released into the bloodstream where it is bound to albu-
min, which cannot be filtrated at the glomeruli. The bilirubin is transported through the bloodstream 
to the liver where it is conjugated with glucuronic acid, forming water-soluble bilirubin monoglucuro-
nide and diglucuronide. The bilirubin glucuronides are excreted into the bile and are subsequently 
excreted into the small intestine. In the intestines, the glucuronic acid of the conjugated bilirubin is 
removed. The unconjugated bilirubin is metabolized by intestinal bacteria, forming urobilinogen. A 
portion of the urobilinogen is further metabolized to stercobilinogen. The urobilinogen and the ster-
cobilinogen are oxidized by intestinal bacteria, forming urobilin and stercobilin, respectively, which 
are excreted into the feces. (© Richard C. Li.)
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urobilin and stercobilin (Figure 17.21), respectively. These compounds are brown colored and are 
responsible for the characteristic color of feces.

The urobilinoids can be detected using the Schlesinger and Edelman tests. In the Schlesinger 
test, a sample is mixed with saturated zinc acetate in ethanol solution to form aurobilinoid–
zinc chelation complex that emits a characteristic green fluorescence under ultraviolet light. 
The Edelman test is a variation of the Schlesinger test. A sample is treated with a mercuric salt 
solution to yield a pink-colored compound. Further treatment with a zinc salt produces fluores-
cence. However, less fluorescence is observed in the Edelman test than in the Schlesinger test. 
Inconclusive and inconsistent results are often obtained using these tests where fecal material 
sometimes gives no visible fluorescence. Additionally, the intensity of the fluorescence observed 
varies between samples. The reliability and selectivity of the tests can be increased using a spec-
trometric measurement of the fluorescence detection of fecal urobilinoids based on the principle 
of the Schlesinger test. A dry sample is treated with 1 mL of zinc acetate solution (1% zinc acetate 
methoxyethanol solution and 0.2% Tris). The suspension is then sonicated for 5 min, heated at 
100°C for 10 min, cooled, and centrifuged. The presence of urobilinoids can be detected using 
excitation and emission maxima at 507 and 514 nm, respectively.

The disadvantages of the Schlesinger and the Edelman tests are their low species specificity as 
both tests cannot distinguish between human and other mammalian fecal materials. Moreover, 
under normal circumstances, up to 5% of urobilinogen is transported to the kidney and oxi-
dized to urobilin in urine. Under some pathological conditions such as hepatic function disor-
ders, the level of urobilin in the urine can be very high. Both the Schlesinger and Edelman tests 
respond to the urobilin of urine stains as well.
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H3C

H3C

H3C

HOOC

N

Urobilin Stercobilin

HN
CH3 H3C

H3C

H3C
O

NH HNNH HN

HN

HH

N

O
CH3

CH3

CH3

CH3O O
CH3

COOHCOOH HOOC

H H

Figure 17.21 Urobilinoids: urobilin and stercobilin. Arrow, site of reduction.



Forensic Biology, Second Edition

324

17.3.2.3 Fecal Bacterial Identification
The human intestinal microbiota contains more than 4000 bacterial species (Figure  17.22). 
Traditional methods for detecting fecal materials utilize the cultivation of fecal indicator bacte-
ria such as Escherichia coli or Enterococci spp. However, these fecal indicator bacteria constitute 
only a small portion of the fecal microbiota, and thus may not be adequate for forensic identi-
fication purposes. Bacteroides, however, accounts for approximately 30% of fecal microbiota 
that are the predominant bacteria in human feces. Bacteroides can potentially be used for the 
forensic identification of feces. Bacteroides is a genus of rod-shaped, anaerobic gram-negative 
bacteria. These bacteria play a role in digesting complex carbohydrates and other substances 
that cannot be digested by human enzymes. The identification of bacteroides can be carried out 
by detecting specific DNA sequences of the rpoB gene, which encodes the β subunit of bacte-
rial RNA polymerase (Chapter 11). The presence of the species-specific DNA sequence can be 
detected by RT-PCR utilizing primers that are specific to the target species but not to other 
species. Thus, only a targeted species can be amplified if it is present. Two fecal predominant 
bacteroides species, B. uniformis and B. vulgatus, can be detected in feces. B. uniformis is not 
detectable in blood, saliva, semen, urine, vaginal fluids, or on skin surfaces. Therefore, B. unifor-
mis is considered as a specific indicator bacterium for forensic fecal identification. Sometimes, B. 
vulgatus can also be detected in vaginal fluid samples. Therefore, precaution should be taken in 
interpreting the results obtained using a B. vulgatus assay. Additionally, this method alone can-
not discriminate between human and animal feces. Furthermore, fecal microbial populations 
can be affected by the host’s diet. Individuals who consume saturated fats and proteins, which 
are abundant in Western diets, have predominantly Bacteroides species in their feces. However, 
individuals who consume a low-fat and carbohydrate-rich diet have predominantly Prevotella 
species, also a genus of gram-negative bacteria, in their feces.

17.4 Identification of Vomitus
17.4.1 Biology of Gastric Fluid
Gastric fluid can be found in stains derived from stomach wounds. Most often, gastric fluid is 
from vomitus found at a crime scene or as dried stains on clothing. Vomiting is the forceful 
expulsion of the contents of the stomach through the mouth (Figure 17.23). It is usually pre-
ceded by salivation, sweating, and the sensation of nausea. Vomiting usually begins with a deep 

Figure 17.22 Intestinal bacteria. (© Richard C. Li.)
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inhalation and the closure of the glottis. Subsequent contractions of the diaphragm and the 
abdominal muscles compress the stomach. The gastric contents are then forced upward through 
the relaxed sphincters and the esophagus, and are expelled through the mouth. Since the glot-
tis is closed, vomitus usually does not enter the respiratory tract. Although the uvula is usually 
raised to close the nasal cavity, vomitus sometimes enters the nose. Vomiting can be caused by a 
wide variety of pathological conditions. Vomiting may be a specific response to acute intoxica-
tion in homicidal poisoning cases or it may be caused by trauma in a violent assault. Thus, the 
forensic identification of the gastric fluid can corroborate a criminal act.

The stomach stores ingested food until it can be emptied into the small intestines. When food 
enters the stomach, hydrochloric acid is secreted in large quantities, which facilitates the initial 
degradation of proteins. The stomach also secretes mucus that lubricates the gastric surface to 
protect the epithelium from acidic environments. Hormones such as gastrin, which are found 
in the gastric fluid, regulate acid secretion and gastric movement. A number of enzymes are 
secreted into the gastric fluid, including lipase, which plays a role in lipid hydrolysis, and gela-
tinase, which can hydrolyze gelatin. The stomach also secretes pepsinogens, which are enzyme 
precursors, into the gastric fluid. In the stomach, pepsinogens are activated by hydrochloric acid 
into pepsin, which is largely responsible for the digestion of proteins.

17.4.2 Vomitus Identification Assays
Vomitus is highly acidic and tends to be malodorous. The color of vomitus may be of forensic 
interest. Fresh blood in the vomit is usually bright red and suggests bleeding due to injuries, 
while dark red blood clots suggest bleeding in the stomach due to pathological conditions such 
as an ulcer. A microscopic examination (Section 17.3.2.1) can be performed to identify recently 
ingested food particles that are present in a sample. The presence of gastric fluid in vomitus can 
also be identified by the detection of pepsins secreted from the stomach. This identification test 
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Figure 17.23 Act of vomiting. The contraction of the diaphragm and the stomach during the phase of 
vomiting is shown (in red). Additionally, the positions of the epiglottis and the uvula during vomiting are 
shown (in red). As a result, the stomach contents are expelled through the mouth. (© Richard C. Li.)
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is based on the proteolytic activity of pepsins. Pepsins are endopeptidases that cleave primar-
ily on peptide bonds in the middle of the protein. Aromatic amino acids such as tryptophan, 
phenylalanine, and tyrosine are the preferred targeted amino acids for the cleavage reaction by 
pepsins (Figure 17.24). In the pepsin-proteolytic assay, fibrin blue is used as a substrate for pep-
sin. Fibrin blue is an insoluble protein–dye complex that is colorless. In the presence of vomitus, 
pepsin cleaves fibrin blue and releases a chromophore that is soluble in water and exhibits a blue 
color. In the assay, a fibrin blue–containing agarose gel is utilized. The sample from vomitus is 
loaded onto the gel plate. After incubation, a blue ring around the sample can be observed as a 
result of the enzymatic reactivity of pepsin. The amounts of pepsin in a sample can be quantified. 
The results on the gel plate can be photographed and the dried gel plate can also be preserved 
as evidence. This method can determine the pepsin content of fresh and aged forensic samples. 
Bodily fluids other than vomitus do not show positive reactions with the use of this method. 
However, this method cannot distinguish the vomitus of humans from that of other vertebrates.
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18
Blood Group Typing and 

Protein Profiling

18.1 Blood Group Typing
18.1.1 Blood Groups
For the purposes of this text, blood groups are defined as antigen polymorphisms present on 
erythrocyte surfaces. Human erythrocyte surface membranes contain a variety of blood group 
antigens. Transfusion reactions occur when an incompatible type of blood is transfused into an 
individual, which can lead to severe symptoms or even death. Karl Landsteiner discovered the 
first blood group, known as the ABO system, in the early 1900s, while studying transfusion and 
transplantation. The discovery made blood transfusions feasible, and Landsteiner was awarded 
the Nobel Prize in 1930.

The International Society of Blood Transfusion currently recognizes 29 blood group systems, 
which include hundreds of antigen polymorphisms (Table 18.1). From the 1950s to the 1970s, the 
structures and biosynthesis pathways of many blood group antigens were determined. The genes 
for most of these blood group systems have been identified as well. The isolation of blood group 
genes has made it possible to understand the molecular mechanisms of the antigenic character-
istics of the blood group systems.

The ABO system of antigens in human erythrocytes is the most commonly used blood group 
system for forensic applications. Forensic laboratories also use others, including the Rh, MNS, 
Kell, Duffy, and Kidd systems.

18.1.2 ABO Blood Group System
In the ABO blood group system, two types of antigens, designated A and B, give rise to four 
blood types:

  Type A individuals have the A antigen.

  Type B individuals have the B antigen.

  Type AB individuals have both A and B antigens.

  Type O individuals have neither A nor B antigens.

The antigens may be found in other bodily fluids as well as blood, such as amniotic fluid, 
saliva, and semen as well as many organs including the kidney, pancreas, liver, and lungs.
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Table 18.1 Blood Group Systems

Number Name Symbol
Number of 
Antigens Gene Names

Chromosomal 
Location

001 ABO ABO 4 ABO 9q34.2

002 MNS MNS 43 GYPA, GYPB, GYPE 4q31.21

003 P P1 1 22q11.2-qter

004 Rh RH 49 RHD, RHCE 1p36.11

005 Lutheran LU 20 LU 19q13.32

006 Kell KEL 25 KEL 7q34

007 Lewis LE 6 FUT3 19p13.3

008 Duffy FY 6 FY 1q23.2

009 Kidd JK 3 SLC41A1 18q12.3

010 Diego DI 21 SLC4A1 17q21.31

011 Yt YT 2 ACHE 7q22.1

012 Xg XG 2 XG, MIC2 Xp22.33, Yp11.3

013 Scianna SC 5 ERMAP 1p34.2

014 Dombrock DO 5 DO 12p12.3

015 Colton CO 3 AQP1 7p14.3

016 Landsteiner-
Wiener

LW 3 ICAM4 19p13.2

017 Chido/
Rodgers

CH/RG 9 C4A, C4B 6p21.3

018 H H 1 FUT1 19q13.33

019 Kx XK 1 XK Xp21.1

020 Gerbich GE 8 GYPC 2q14.3

021 Cromer CROM 12 DAF 1q32.2

022 Knops KN 8 CR1 1q32.2

023 Indian IN 2 CD44 11p13

024 Ok OK 1 BSG 19p13.3

025 Raph RAPH 1 CD151 11p15.5

026 John Milton 
Hagen

JMH 1 SEMA7A 15q24.1

027 I I 1 GCNT2 6p24.2

028 Globoside GLOB 1 B3GALT3 3q26.1

029 Gill GIL 1 AQP3 9p13.3

Source: Adapted from Daniels, G.L., et al., Vox Sang, 87, 304–316, 2004.



18.1 Blood Group Typing

333

18.1.2.1 Biosynthesis of Antigens
All individuals generate the O antigen, also known as the H antigen. The O antigen is synthe-
sized by fucosyltransferase, a fucose transferase encoded by the FUT genes, which adds a fucose 
on the end of a glycolipid (in erythrocytes) or glycoprotein (in tissues). An additional monosac-
charide (Figure 18.1) is then transferred to the O antigen by a transferase encoded by the ABO 
locus. The specificity of this enzyme determines the ABO blood type (Figure 18.2):

  The A allele produces the A-transferase, which transfers N-acetylgalactosamine to the O 
antigen and thus synthesizes the A antigen.

  The B allele produces the B-transferase, which transfers galactose to the O antigen and 
thus synthesizes the B antigen.

  The O allele has a mutation (small deletion), which eliminates transferase activity, and no 
modification of the O antigen occurs.

As a result, the A and B antigens differ in their terminal sugar molecules. Subgroups of blood 
types A and B have been described. The most important are the A1 and A2 antigens. Both A1 and 
A2 (and A1B and A2B) cells react with anti-A antibodies. However, A1 cells react more strongly 
than A2 cells. The apparent difference between A1 and A2 is that each A1 cell contains more cop-
ies of the A antigen than A2 cells.

18.1.2.2 Molecular Basis of the ABO System
A- and B-transferases are encoded by a single gene, ABO, on chromosome 9. The ABO gene 
(approximately 20  kb) is organized into seven exons. Most of its coding regions are located 
in exons 6 and 7 of the ABO locus, including the domain responsible for catalytic activity 
(Figure 18.3). The gene products of the A and B alleles differ by four amino acid substitutions 
(Table 18.2). In particular, amino acid residues at positions 266 and 268 are more important in 
determining the enzymatic property of a transferase.

The A1 allele and A2 allele differ in a single nucleotide deletion upstream from the translation 
stop codon. The resulting reading-frame shift in the A2 allele abolishes the stop codon, yielding 
a product with an extra 21–amino acid residue at the C-terminus.

Subgroups of blood types O have also been reported. The sequence of the O1 allele has a dele-
tion of a single nucleotide at exon 6. This nucleotide deletion leads to a reading-frame shift gener-
ating a truncated protein, which lacks the catalytic domain. While the O1y allele also has a single 
nucleotide deletion, it differs from O1 by nine nucleotides within the coding sequence. O1 and 
O1y have identical phenotypes. There is also an O2 allele, which is inactivated by a substitution 
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Figure 18.3 Structure of ABO gene and variants. Exons 6 and 7 are shown. The deletion mutation 
in A2 and O1 variants is indicated by an inverted triangle and leads to their A2 and O phenotypes, 
respectively. (© Richard C. Li.)

Table 18.2 Amino Acid Substitutions at Four Positions in 
Human ABO Variants A1, B, and O 2

ABO Variant

Amino Acid Position

176 235 266 268

A1 Arginine Glycine Leucine Glycine

B Glycine Serine Methionine Alanine

O2 Glycine Glycine Leucine Arginine

Fucosyltransferase

Gal N-AcGlu

N-AcGlu

Gal

Gal Gal

Gal

Fuc

N-AcGlu Gal

Fuc

A antigen

B antigen

O antigen

A-tr
ansfe

ras
e

B-transferase

N-AcGlu

UDP

UDP Fuc

N-AcGal N-AcGal

Figure  18.2 Biosynthesis of ABO antigens. O-antigen biosynthesis is catalyzed by fucos-
yltransferase. A-antigen biosynthesis is catalyzed by the A-transferase that transfers the 
N-acetylgalactosamine from the donor and uridine diphosphate (UDP)-N-acetylgalactosamine to 
the O antigen. B-antigen biosynthesis is catalyzed by the B-transferase that transfers the galactose 
from UDP-galactose to the O antigen. N-AcGlu, N-acetytglucosamine; Gal, galactose; Fuc, fucose; 
N-AcGal, N-acetylgalactosamine. (© Richard C. Li.)
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mutation at glycine (position 268) by arginine. Additionally, a few dozen other rare O alleles, 
which yield inactive proteins, have also been documented.

18.1.2.3 Secretors
In addition to erythrocytes, individuals whose A, B, and O antigens can be found in other 
types of bodily fluids are referred to as secretors. Eighty percent of Caucasians are secretors. As 
described earlier, the O antigen is the substrate for the A- and B-transferase because the A- and 
B-transferase can only utilize a fucosylated substrate. The O antigen is synthesized by fucosyl-
ation of the terminal galactosyl residue catalyzed by the fucosyltransferase, which is encoded by 
FUT genes.

Chromosome 19 contains two homologous genes: FUT1 and FUT2. FUT1 is expressed in tis-
sues of mesodermal origin (embryonic tissues that serve as precursors of hemopoietic tissues, 
muscle, the skeleton, and internal organs) and is responsible for the synthesis of the O antigen 
in erythrocytes. FUT2 is expressed in tissues of endodermal origin (embryonic tissues that are 
precursors of the gut and other internal organs); it is responsible for the synthesis of the O anti-
gen in secretions.

About 20% of Caucasian individuals (called nonsecretors) are homozygous for a nonsense 
mutation in FUT2 at amino acid position 143, resulting in a truncated protein. Bodily fluids 
such as the semen of type A or B nonsecretors (who carry homozygous FUT2 mutations) con-
tain no A or B antigens despite containing active A- or B-transferases (Figure 18.4). This can 
be a problem in investigating sexual assault cases when the blood type of the seminal evidence 
needs to be determined. However, nonsecretors have O antigens on erythrocytes synthesized by 
FUT1 and thus have A or B antigens in blood. Individuals carrying very rare homozygous FUT1 
mutations produce erythrocyte O-deficient phenotypes in which the erythrocytes express no 
O antigens and thus express neither A nor B antigens, regardless of ABO genotype. Individuals 
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Figure 18.4 Tissue-specific O-antigen biosynthesis by FUT1 and FUT2 gene products. Tissue-
specific O-antigen biosynthesis in erythrocytes is catalyzed by the FUT1 gene product; in secretions, 
it is catalyzed by the FUT2 gene product. The mutations abolishing the biosynthesis of O antigens 
are indicated. The FUT2 mutation produces a nonsecretor phenotype. (© Richard C. Li.)
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who carry both FUT1 and FUT2 mutations have no O antigens (nor A nor B antigens) in their 
erythrocytes and other bodily fluids and are known as Bombay (Oh) phenotypes.

18.1.2.4 Inheritance of A and B Antigens
A and B alleles are dominant. For AO and BO heterozygotes, the corresponding transferase syn-
thesizes the A or B antigen. A and B alleles are codominant in AB heterozygotes because both 
transferase activities are expressed. The OO homozygote produces neither transferase activity 
and therefore lacks both antigens. The inheritance of A and B alleles obeys Mendelian prin-
ciples (Chapter 25). For example, an individual with type B blood may have inherited a B allele 
from each parent or a B allele from one parent and an O allele from the other; thus, an indi-
vidual whose phenotype is B may have the BB (homozygous) or BO (heterozygous) genotype. 
Conversely, if the blood types of the parents are known, the possible genotypes of their children 
can be determined. When both parents are type B (heterozygous), they may produce children 
with the genotype BB (B antigens from both parents), BO (B antigen from one parent, O from 
the other heterozygous parent), or OO (O antigens from parents who are both heterozygous). 
Thus, blood group typing can be used for paternity testing.

18.1.3 Forensic Applications of Blood Group Typing
The application and usefulness of blood typing in forensic identification are based on the ability 
to group individuals into four different types using the ABO blood system, allowing individuals 
to be identified. For example, if one crime scene blood sample is type B and a suspect has type 
A, the crime scene sample must have a different origin. However, if both the sample and the 
suspect are type A, the sample may have come from the same origin or from a different origin 
that happened to be type A.

Unfortunately, the probability that any two randomly chosen individuals have an identical 
blood type is very high. Approximately 42% of Caucasians have type A blood. The frequency of 
other blood types within the ABO system is shown in Figure 18.5. Multiple blood group systems 
were utilized to decrease the probability of a coincident match.

The A and B antigens are very stable and can be identified in dried blood even after many 
years. They can also be found in semen and other bodily fluids of secretors. Thus, in sexual assault 
cases, for example, the ABO type of a semen sample can be examined to identify a perpetrator.

18.1.4 Blood Group Typing Techniques
The most common assays used in forensic serology involve agglutination and include the Lattes 
crust and absorption–elution assays.

18.1.4.1 Lattes Crust Assay
In the early 1900s, Karl Landsteiner used his blood and blood obtained from his laboratory 
coworkers to test the effects of serum on erythrocytes. He discovered that naturally occurring 

Type A
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Type B
8%Type AB
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Type O
47%

Figure 18.5 Frequency distributions of ABO types observed in American Caucasians. Different 
human populations may exhibit different frequencies of the four blood types. (© Richard C. Li.)
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antibodies in serum caused agglutination of certain erythrocytes, and the agglutination pat-
terns observed were designated A, B, and O. Each pattern indicated the presence or absence of a 
particular antigen on erythrocytes.

Shortly after birth, newborn infants develop antibodies against antigens that are not present 
in their own bodies. For example, type A individuals develop anti-B antibodies, type B individu-
als develop anti-A antibodies, type O individuals develop both types of antibodies, and type AB 
individuals do not develop anti-A or anti-B antibodies. When the plasma of a type A individual 
is mixed with type B cells, the anti-B antibodies from the type A individual cause the type B 
cells to agglutinate. This result forms the basis for blood group typing.

The Lattes crust assay relies on the principles of Landsteiner’s experiments. It is an aggluti-
nation-based assay that utilizes the A, B, and O indicator cells to test the agglutination reaction 
with its corresponding naturally occurring serum antibodies in a questioned sample. The pro-
cedure for the Lattes crust assay is described in Box 18.1 and illustrated in Figure 18.6. Typical 
results are summarized in Table 18.3 and illustrated in Figure 18.7. Type A blood contains nat-
urally occurring anti-B antibodies that agglutinate only with B cells. Likewise, type B blood 
agglutinates only with A cells, type O blood agglutinates with both A and B cells, and type AB 
blood does not agglutinate with any cells.

The Lattes crust assay is simple and rapid. However, one limitation is that the assay is not very 
sensitive and requires a large quantity of blood. Recall that successful agglutination reactions 
usually require intact cells. The agglutination assay of forensic samples is, therefore, difficult to 
carry out because blood cells lyse when they are dry. Therefore, this method is not reliable for 
testing old stains.

BOX 18.1 LATTES CRUST ASSAY PROCEDURE

 1. Place small quantities of blood crust from a specimen on a microscopic slide and 
place a cover slide over the crusts. Prepare slides for A, B, and O cells separately.

 2. Prepare cell suspensions with saline (0.85% NaCl in phosphate buffer, pH 7.4) for 
the A, B, and O cells separately.

 3. Apply a few drops of the A-cell suspension and allow the cells to diffuse under the 
cover slip. Repeat this step for B cells and O cells.

 4. Incubate the slides in a moisture chamber at room temperature for 2 h.
 5. Examine results under a microscope.

Indicator cells

Incubate

Crust

Microscopic
examination

Cover
slide

Figure 18.6 Lattes crust assay. (© Richard C. Li.)
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18.1.4.2 Absorption–Elution Assay
The absorption–elution assay is highly sensitive and can be used for testing dried bloodstains. 
This method indirectly detects the presence of antigens. The antigens are immobilized in a solid 
phase (Figure 18.8). At low temperatures, the antigens bind to their corresponding antibodies: 
anti-A antibodies, anti-B antibodies, or anti-O lectins. (The anti-O lectin is isolated from plants 
and reacts strongly with the O antigen present in type O blood, but has some cross-reaction 
with the A antigen). The excess unbound antibodies are removed by washing, and the bound 
antibodies are then eluted at higher temperatures (recall that antigen–antibody binding can be 
affected by temperature; Chapter 13). The eluted antibodies can then be identified by an aggluti-
nation assay using A, B, and O indicator cells.

Typical results of an absorption–elution assay are summarized in Table  18.4. The blood-
stains containing the A antigen can bind to anti-A antibodies. The eluted anti-A antibody can 
form agglutination with A cells. Likewise, for type B blood, the eluted anti-B antibody can form 
agglutination with B cells; for type AB blood, the eluted antibodies can form agglutination with 
both A and B cells; and with type O blood, the eluted anti-O lectins can form agglutination with 
O cells.

18.2 Forensic Protein Profiling
Because of the limitations of blood group systems, inherited protein polymorphic markers 
have been utilized to decrease the chances of matches between two unrelated individuals. The 
amino acid sequences of many proteins vary in the human population. An estimated 20%–30% 
of the proteins in humans are polymorphic. Some of the variations in amino acid sequences 
affect the function of proteins, but many of them exert little or no effect on protein function. 
Thus, individuals can be divided into groups based on the types of protein polymorphisms. 
A combination of the blood group systems and protein polymorphic markers can be used for 

Table 18.3 Representative Results of Lattes 
Crust Assay

Blood Type Serum Antibody
Agglutination 

Reaction Observed

A Anti-B B cells

B Anti-A A cells

O Anti-A, anti-B A cells, B cells

AB None None

(a) (b) (c)

Figure 18.7 Diagram of Lattes crust assay results. (a) Indicator cells added before incubation. 
(b) Strong agglutination: large clumps are observed after incubation. (c) Negative agglutination: a 
cloudy background may be observed after incubation.
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criminal investigations and paternity testing. The probability that results for two unrelated per-
sons would match is decreased to one in several hundred through use of the blood-typing and 
protein-profiling techniques.

18.2.1 Methods
Identification of protein polymorphisms is performed through electrophoretic separation based 
on the molecular weights (Mr) and charges of the protein variants.

Binding Washing Elute

Indicator
cells

Agglutination

Figure 18.8 Absorption–elution assay. An antigen sample is immobilized on a solid-phase matrix. 
Antibodies (two different types are shown) are added. The antibody that is specific to the antigen 
binds. Unbound antibody is washed away. The bound antibody is then eluted. The eluted antibody 
is tested with indicator cells (two different types are shown). The indicator cell that is specific to the 
antibody eluted shows a positive agglutination reaction. (© Richard C. Li.)

Table 18.4 Representative Results of Absorption–Elution 
Assay

Blood Type (Stain) Antibody Bound and Eluted
Agglutination 

Reaction Observed

A Anti-A A cells

B Anti-B B cells

O Anti-O O cells

AB Anti-A, anti-B A cells, B cells
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18.2.1.1 Matrices Supporting Protein Electrophoresis
Electrophoresis of proteins is generally carried out in a support material, also called the matrix, 
to separate various macromolecules. The matrix also reduces the effects of diffusion and convec-
tion on the macromolecules. Historically, protein profiling for forensic application utilizes two 
types of matrices: papers such as cellulose acetate; and gels composed of starch, agar, agarose, or 
polyacrylamide. The first polymorphic protein marker, phosphoglucomutase, was characterized 
by starch-gel electrophoresis. However, agarose and polyacrylamide became more commonly 
used in electrophoresis due to good reproducibility and reliability (Table 18.5).

18.2.1.2 Separation by Molecular Weight
An electrophoretic method is frequently utilized to resolve various proteins based on their 
molecular weights. Native electrophoresis, also known as nondenaturing electrophoresis, can 
be used to isolate proteins for studying the functions of proteins. Biological activity of the pro-
tein can be retained for further analysis. However, some proteins are not well separated in elec-
trophoresis in their native form. Thus, it may be necessary to denature the proteins in order for 
them to be resolved better during separation. This process is called denaturing protein electro-
phoresis. The following additives can be used:

18.2.1.2.1 Reducing Agents
It is common to include reducing agents such as mercaptoethanol (ME), dithiothreitol (DTT), 
or sodium mercaptoethane sulfonate (MESNA) to denature proteins. Reducing agents cleave the 
disulfide bonds of proteins. As a result, protein shape becomes unfolded and linear. These agents 
can be used during sample preparation and can also be added to the electrophoresis buffer.

18.2.1.2.2 Detergents
Detergents disrupt noncovalent interactions within the structures of native proteins. The pro-
cedure is generally performed with sodium dodecylsulfate (SDS), a strong anion detergent that 
binds to most proteins in amounts proportional to the molecular weight of the protein (approxi-
mately one molecule of SDS for two amino acids). The bound SDS contributes a large net nega-
tive charge on the protein, which masks any surface charges of the native protein. As a result, 
the charge-to-mass ratio of the protein becomes a constant. As with reducing agents, the various 
native conformations of proteins change to a more uniformly linear shape when SDS is bound. 

Table 18.5 Properties of Matrices Supporting Protein Electrophoresis

Supporting 
Matrix

Pore 
Size EEO Reproducibility Strength Preparation Toxicity

Cellulose acetate Large High Poor Good Simple Nontoxic

Starch Large High Poor Fragile Simple Nontoxic

Agar Large High Poor Fragile Simple Nontoxic

Agarose Large Low Good Fragile Simple Nontoxic

Polyacrylamide Small Very 
Low

Good High; 
tolerates 
high 
electronic 
field

Complex Toxic

Note: Electroendosmosis (EEO) occurs when fixed charges of the supporting matrix cause liquid 
flow toward the electrodes. A matrix with high EEO may affect the mobilities and separation 
performances of proteins during electrophoresis.
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Electrophoretic mobility in the presence of SDS, therefore, becomes based on Mr rather than 
both Mr and the charge. Smaller proteins move through the pores of the gel matrix more rapidly 
than larger proteins. As a result, the larger the size of the protein, the smaller its electrophoretic 
mobility.

SDS gel electrophoresis can also be used to determine the Mr of an unidentified protein based 
on its electrophoretic mobility on the gel. Standard marker proteins of known molecular weight 
are run on the same gel and allow the estimation of the Mr of an unknown protein. A linear plot 
of log Mr values of marker proteins versus relative migration during electrophoresis allows the 
molecular weight of the unknown protein to be determined from the graph.

18.2.1.3 Separation by Isoelectric Point
The isoelectric focusing (IEF) technique can be used to separate proteins according to their iso-
electric points (pI). The pI is the pH value at which the net electric charge of an amino acid is zero. 
All proteins are composed of amino acids, and each has its own characteristic pI at which its net 
electric charge is zero and does not migrate in an electric field.

In IEF electrophoresis, a pH gradient is created in a gel between the electrodes, and a pro-
tein sample is placed in a well on the gel. With an applied electric field, proteins enter the gel 
and migrate until they reach a pH equivalent to their pI values, at which they lose mobility 
(Figure 18.9). IEF, based on molecular charge, is capable of producing sharper bands than dena-
turing protein electrophoresis and thus has a higher resolving power. The technique can detect 
very low quantities of proteins in samples. A pH gradient in the gel is established by utiliz-
ing materials such as carrier ampholytes or immobilines that are dispersed in the gel. Carrier 
ampholytes are synthetic amphoteric compounds that contain multiple weak ionizable moieties 
acting as either acids or bases. To establish a pH gradient, a mixture of ampholytes with slightly 
different pIs is directly added to an IEF gel. The pH gradient is generated by applying an electric 
field on the ampholyte-containing gel. Under the electric field, the negatively charged ampho-
lytes migrate toward the anode, and the positively charged ampholytes migrate to the cathode. 
As a result, a gradual pH gradient is created between the anodal end of the gel (acidic) and the 
cathodal side of the gel (basic). Immobilines are a series of modified acrylamide monomers that 
can be acidic or basic. The pH gradient of an IEF gel can also be established using a gradient-
forming device that changes the proportion of the immobilines added to the gel matrix mixture 
as it is loaded into the gel-casting apparatus.
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Figure 18.9 Isoelectric focusing. (a) A pH gradient is established by allowing low-molecular-weight 
organic acids and bases to distribute themselves in an electric field across a gel. A sample con-
taining a protein mixture is loaded into a sample well. (b) During the electrophoresis, each protein 
migrates until it matches its pI. Proteins with different pIs are separated. (© Richard C. Li.)
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18.2.2 Erythrocyte Protein Polymorphisms
18.2.2.1 Erythrocyte Isoenzymes
The human erythrocyte contains a number of isoenzymes, which are multiple forms of an 
enzyme that catalyze the same reaction but differ in their amino acid sequences. Individuals 
can be divided into groups on the basis of the different isoenzymes present in their erythrocytes. 
The isoenzyme type is also inherited according to Mendelian principles.

The polymorphism of erythrocyte phosphoglucomutase (PGM) was first described in the 
1960s and was later successfully applied to the testing of bloodstains. PGM, an important meta-
bolic enzyme, catalyzes the reversible conversion of glucose-1-phosphate and glucose-6-phos-
phate. The PGM found in erythrocytes is encoded at the PGM1 locus at chromosome 1. The 
PGM encoded by PGM1 can also be found in semen and thus can be utilized for the testing of 
semen samples in sexual assault cases. The protein polymorphisms of the PGM have two alleles, 
which result in three different phenotypes, depending on the combination of the two alleles. 
The success in the forensic application of PGM led to the similar use of many other erythrocyte 
isoenzyme polymorphisms. The most commonly used erythrocyte isoenzyme systems are listed 
in Table 18.6.

18.2.2.2 Hemoglobin
Recall that the use of hemoglobin (Hb) in screening and confirmatory blood tests was discussed 
in Chapter 12. Adult human Hb consists of two α chains and two β chains. Each polypeptide 
chain contains a heme group involved in oxygen binding. A very small portion of blood pos-
sesses a form of the human adult Hb consisting of two α chains and two δ chains.

More than 200 Hb variants have been identified and can be useful as markers for foren-
sic applications. In particular, two types of human Hb variants are important in forensic test-
ing: fetal Hb and sickle-cell Hb (Hb S). Hb S is the factor responsible for sickle-cell disease 
(Figure 18.10). Hb variants can be resolved using electrophoresis (Figure 18.11).

18.2.2.2.1 Fetal Hemoglobin
Humans have three forms of Hb during their development: embryonic, fetal, and adult Hb. 
In adults, the Hb tetramer consists of two identical α and two identical β chains. Embryonic 
erythrocytes contain Hb tetramers that are different from the adult form. Each embryonic Hb 
consists of two identical α-like chains and two identical β-like chains. The embryonic Hb is 
gradually replaced during pregnancy (approximately 3 months after conception) by fetal Hb, 
which comprises approximately 70% of the Hb in fetal blood. The fetal Hb has two identical α 
chains and two identical γ chains.

TABLE 18.6 Common Isoenzymes Used for Forensic Protein 
Profiling

Erythrocyte Isoenzyme Protein Symbol Number of Alleles

Phosphoglucomutase PGM 2a

Erythrocyte acid phosphatase ACP/EAP 3

Esterase D ESD 2

Adenylate kinase AK 2

Glyoxalase I GLO 2

Adenosine deaminase ADA 2

a Ten alleles can be observed using IEF electrophoresis.
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The embryonic and fetal Hbs have higher affinities to oxygen, required to provide the 
embryo and fetus with sufficient amounts of oxygen taken from maternal blood. Fetal Hb 
is replaced by adult Hb approximately 6 months after birth. These Hbs are encoded by their 
corresponding genes located at the globin gene clusters. The detection of fetal Hb in a blood-
stain via electrophoresis can provide important evidence in cases of infanticide and concealed 
birth.

18.2.2.2.2 Hemoglobin S
Hb S polymorphism has forensic importance in identifying individuals. The Hb S polymor-
phism is observed in high frequencies among those of African heritage and some Hispanic 
populations. Such a protein polymorphic marker can provide investigational leads for the indi-
cation of the ethnic origin of a perpetrator. Hb S transports oxygen much less efficiently than 
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Figure 18.10 Normal and sickle-cell hemoglobin β chains. (a) Normal hemoglobin β chain contains a 
glutamic acid residue (Glu) at position 6 of the N-terminal of the protein. (b) At position 6 of the sickle-
cell hemoglobin β chain, the glutamic acid residue is replaced by a valine (Val). (© Richard C. Li.)
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Figure 18.11 Hemoglobins resolved by isoelectric focusing electrophoresis. (© Richard C. Li.)
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normal Hb. Individuals who are homozygous for Hb S usually die early after suffering from 
sickle-cell anemia and related complications. However, a heterozygous individual (an individual 
with a copy of the wild-type Hb allele from one parent and a copy of the Hb S allele from the 
other) can survive. This condition is known as the sickle-cell trait.

In the 1950s, Vernon Ingram of Cambridge University discovered the molecular mechanism 
of the Hb S defect. His work revealed that the Hb S bears a mutation, which changes the glu-
tamic acid in wild type to a valine at the sixth amino acid from the N-terminal end of the β 
chain. This substitution of amino acids causes a major change in the structure of the β chain, 
which in turn results in sickle-cell anemia.

18.2.3 Serum Protein Polymorphisms
The serum portion of blood consists of a large number of proteins. The work on serum pro-
teins for forensic purposes started in the 1950s, when variations in serum proteins were found 
useful for distinguishing individuals. Over the years, a number of serum proteins were char-
acterized and applied for forensic testing. Haptoglobin (Hp) was the most widely used of the 
polymorphic serum proteins in forensic biology (Figure 18.12). Haptoglobin is a protein that 
binds and transports Hb from the bloodstream to the liver for the recycling of the iron con-
tained in the Hb.

Immunoglobulin (Chapter 10) accounts for approximately 15% of serum protein and has 
been found to be highly variable. Two immunoglobulin proteins are utilized for forensic 
application. The γ chain protein (Gm) is the heavy chain of immunoglobulin G and the κ 
chain protein (Km) is one of two types of the light chain of all immunoglobulins. Table 18.7 
lists common serum group systems. All exhibit genetic variations and can be detected in 
bloodstains. The variants of these proteins can be determined by electrophoresis or serologi-
cal methods.

Figure 18.12 Polyacrylamide gel electrophoresis of haptoglobin proteins. From left to right: Hp2, 
Hp2-1, Hp2, Hp1, Hp2, Hp2-1, Hp1, Hp2, Hp2-1. An anode is at the bottom. (From James, S. 
and Nordby, J.J., Forensic Science: An Introduction to Scientific and Investigative Techniques, CRC 
Press, Boca Raton, FL, 2005. With permission.)
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19
Variable Number Tandem 

Repeat Profiling
Tandem repeats are abundant in the human genome. Minisatellites were first defined as a 
class of tandem repeats in the 1980s. Some of these repeats share a GC-rich core sequence. 
Subsequently, tandem repeats with higher AT contents of core sequence have also been charac-
terized. The minisatellites are also called variable number tandem repeats (VNTRs), as shown 
in Figure 19.1. The repeat unit length of a VNTR can range from several to hundreds of base 
pairs (bp). The tandem repeat arrays can be kilobases (kb, corresponding to 103 bp) long, and 
the numbers of tandem repeat units in some VNTR loci are highly variable, leading to variable 
lengths of DNA fragments. A genotype is defined by a particular number of tandem repeat 
units at a given locus.

Table 19.1 lists the common VNTR loci used for forensic testing. To achieve high discrimi-
nating power, the VNTR loci should not be linked, which means that they should be inherited 
independently of each other. For example, loci located on different chromosomes or far apart 
on the same chromosome can be used (Section 21.2). Many VNTR loci used for forensic appli-
cations are highly polymorphic, and as many as hundreds of different genotypes per locus can 
be observed among the population. The discriminating power of VNTR loci used for forensic 
testing can be measured by population match probability (Pm; Chapter 25). The lower the Pm, the 
less likely a match will occur between two randomly chosen individuals. A Pm of up to 10–12 can 
be achieved by testing several VNTR loci.

19.1 Restriction Fragment Length Polymorphism
VNTR profiling utilizes RFLP—the first historical method used in forensic DNA testing 
(Figure 19.2). It utilizes restriction endonucleases that recognize and cleave specific sites along 
the DNA sequence. Cleavage of a DNA sample with a particular restriction endonuclease results 
in a reproducible set of restriction fragments of various lengths. Appropriate restriction endo-
nucleases should be selected so that the genomic DNA is cleaved at sites that flank the VNTR 
core repeat region. The resulting fragments are then separated according to their sizes by gel 
electrophoresis through a standard agarose gel (Chapter 9).

The DNA is then processed using the Southern transfer and hybridization technique. The 
DNA is denatured and transferred from the gel to a supporting matrix such as a nylon or nitro-
cellulose membrane. The DNA immobilized on the membrane is then hybridized with a labeled 
probe. Only bands of DNA that have complementary sequences to the probe are recognized 
by detection systems such as autoradiography (Section 19.1.4). Using the RFLP technique, the 
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length variations among restriction sites can be detected. Most forensic applications focus on 
the length variations of VNTR regions located between two restriction sites.

In summary, the RFLP method includes several steps: (1) genomic DNA preparation, 
(2) restriction endonuclease digestion of the genomic DNA into fragments, (3) agarose gel 
electrophoretic separation of the DNA fragments according to size, (4) transfer of DNA frag-
ments using Southern transfer, (5) hybridization with locus-specific probes, and (6) detec-
tion of locus-specific bands by autoradiography or chemiluminescence.

19.1.1 Restriction Endonuclease Digestion
Restriction endonucleases are enzymes that cleave the phosphodiester bond of DNA at or near 
specific recognition nucleotide sequences known as restriction sites. A restriction site usually is 
a short motif that is 4–8 bp in length. It often has a specific palindromic recognition sequence, 
that is, a segment of double-stranded DNA in which the nucleotide’s sequence is identical with 
an inverted sequence in the complementary strand. Thus, double-stranded DNA is required to 
be cleaved by most restriction endonucleases. As a result, both sticky ends and blunt ends of 
restriction fragments can be generated after the cleavage (Figure 19.3).

To date, hundreds of restriction endonucleases have been described. They are traditionally 
classified into three types on the basis of subunit composition and enzymatic properties. Type II 
restriction endonucleases are most commonly used in molecular biology applications. Type II 
restriction endonucleases, requiring magnesium as a cofactor, usually cleave DNA at defined 
positions within their recognition sequences. The Enzyme Commission (EC) number of type II 

Core repeat regionHaeIII HaeIII

31 bp

Figure 19.1 VNTR locus D2S44 (2q21.3–2q22). Each repeat unit consists of 31 bp. HaeIII rep-
resents the HaeIII restriction site.

Table 19.1 Common VNTR Loci

Locus
Chromosome 

Location
Repeat Unit 
Length (bp)

HaeIII Fragment 
Size (kb) Probe

D1S7 1 9 0.5–12 MS1

D2S44 2 31 0.7–8.5 yNH24

D4S139 4 31 2–12 pH30

D10S28 10 33 0.4–10 pTBQ7

D14S13 14 15 0.7–12 pCMM101

D16S85 16 17 0.2–5 3′HVR

D17S26 17 18 0.7–11 pEFD52

D17S79 17 38 0.5–3 V1

Source: Adapted from Budowle, B., et al., DNA Typing Protocols: Molecular 
Biology and Forensic Analysis, Eaton Publishing, Natick, MA, 2000; 
Office of Justice Programs, Future of forensic DNA testing: Predictions 
of the Research and Development Working Group. National Institute 
of Justice, US Department of Justice, 2000.
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restriction endonucleases is EC 3.1.21.4. The EC number is a numerical classification system of 
nomenclature based on the chemical reaction that is catalyzed by the enzyme. In contrast, type I 
(EC 3.1.21.3) and type III (EC 3.1.21.5) restriction endonucleases cleave at sites remote from their 
recognition site, which are not utilized for RFLP applications.

Restriction endonucleases are isolated from various bacteria. Each enzyme is named using a 
nomenclature system after the bacterium from which it was isolated. For example, in the restric-
tion enzyme HaeIII, H is from the genus name Haemophilus, ae is from the species name aegyp-
ticus, and III stands for the third endonuclease isolated from the Haemophilus aegyptius bacteria.

The restriction endonucleases play a role in protecting the bacteria from phage (bacterial 
virus) infections by using their endonucleases to destroy foreign DNA molecules. Bacterial DNA 
is usually methylated. In prokaryotes, the Dam methylase transfers a methyl group to the N6 
position of the adenine in the sequence GmATC and the Dcm methylase transfers a methyl 
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Figure 19.2 RFLP. (a) Restriction digestion generates restriction fragments with various lengths of 
genomic DNA. (b) Restriction fragments are separated by gel electrophoresis. DNA is transferred to 
a solid phase and probed. The signal is detected and the DNA fragment of interest can be observed. 
Band patterns of heterozygous loci of individuals are shown. (© Richard C. Li.)
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group to the C5 position of cytosine in the sequences CmCAGG and CmCTGG. The activities 
of restriction endonucleases can be influenced by DNA methylation. Many restriction endo-
nucleases cannot cleave methylated DNA. Therefore, bacterial DNA is distinguishable from for-
eign DNA by the bacteria’s restriction endonucleases. This phenomenon protects bacterial DNA 
from digestion by their own endonucleases. Note that because DNA methylation also occurs in 
the human genome (Chapter 11), it is important to choose the restriction endonucleases that are 
not affected by the methylation of human genomic DNA for RFLP analysis.

The type II restriction endonucleases were used in RFLP analysis for forensic DNA testing 
(Figure 19.3). In order to perform this analysis, the preferred restriction endonucleases for RFLP 
were those that cleave at the flanking regions of VNTR repeat units but not within the core 
repeat sequences of the VNTR. Most forensic laboratories used a single restriction endonucle-
ase for a panel of VNTR loci because the DNA in evidence samples was often insufficient for 
performing multiple tests with different restriction endonucleases. For instance, Hinf I-based 
RFLP was commonly used in European forensic laboratories, and HaeIII-based RFLP was used 
in North American and some European forensic laboratories. Other restriction endonuclease-
based RFLPs such as PstI were also used.

The use of these common restriction endonucleases allows the comparison of data of various 
laboratories. Several VNTR loci are suitable for RFLP analysis with these restriction endonucle-
ases. For example, HaeIII presents several advantages for forensic RFLP analysis. It recognizes a 
four-base sequence, 5′-GGCC-3′, and cleaves the DNA between the internal G and C residues of 
the recognition site (GG/CC). HinfI recognizes a five-base restriction site, and PstI recognizes a 
six-base restriction site. Hypothetically, four-base restriction sites are likely to occur more often 
than five- and six-base restriction sites in the human genome. Thus, HaeIII restriction sites occur 
more frequently than HinfI and PstI sites. As a result, HaeIII-cleaved DNA fragments are smaller 
than those of HinfI and PstI. The HaeIII-generated VNTR allele sizes are easier to separate using 
conventional agarose gels, also called analytic gel electrophoresis. After electrophoresis, a smear 
of various sizes of DNA fragments can be observed. The analytic gel is then processed for Southern 
transfer. Moreover, the enzymatic activity of HaeIII is not affected by the methylation of human 
genomic DNA. Its enzymatic activities also appear unaffected when a reaction proceeds under 
nonoptimal conditions. Additionally, low star activity is observed (Section 19.1.5.2.2).

19.1.2 Southern Transfer
Also known as Southern blotting, this technique was named after Sir Edwin Southern, who 
developed it in the United Kingdom in the mid-1970s. The method can be used to transfer 
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Figure 19.3 Restriction sites for HaeIII, HinfI, and PstI. HaeIII digestion produces a blunt end DNA 
fragment. HinfI and PstI digestions produce sticky ends. N represents any nucleotide. (© Richard C. Li.)
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DNA from an agarose gel to a solid matrix so that it can be detected with a hybridization probe 
(Section 19.1.3). This method is still used today in many research laboratories. Prior to the trans-
fer of DNA, the DNA in the gel must be denatured, under alkaline conditions such as treatment 
with sodium hydroxide, into single-stranded DNA. The single-stranded DNA in the gel is then 
transferred by capillary action to a solid matrix such as a piece of nylon membrane. The single-
stranded DNA fragments transferred can be immobilized on a nylon membrane by an ultravio-
let cross-linking process (Figure 19.4).

19.1.3 Hybridization with Probes
A hybridization probe of RFLP is a small segment of labeled DNA that is usually several hundred 
to a thousand bases in length containing the VNTR sequence. It is utilized to detect the presence 
of much longer target DNA sequences, in this case the VNTR sequences that are complementary 
to the nucleotide sequences of the probe. The probe is first denatured by heating or by exposure 
to alkaline conditions into single-stranded DNA. The hybridization process allows complemen-
tary pairing between the probe and the target sequence. Two types of probe techniques were 
developed for VNTR analysis: the multilocus probe and single-locus probe techniques.

19.1.3.1 Multilocus Probe Technique
The multilocus probe (MLP) technique can detect multiple VNTR loci simultaneously 
(Figure  19.5). Some VNTRs in the human genome share a short GC-rich core sequence of 
10–15 bp. The MLP consists of this core sequence and hybridizes to multiple VNTRs that share 
these core sequences. As a result, the utilization of MLP produces a complex bar-code-like band 
pattern from alleles of multiple VNTR loci (Figure 19.6).

The MLP technique was pioneered by Sir Alec Jeffreys in 1984 at the University of Leicester in 
the United Kingdom and was called DNA fingerprinting. Because of its excellent discriminating 
power, the method was used for parentage testing in immigration disputes with great success. 
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Figure 19.4 Southern blotting. DNA in agarose gel is denatured into single-stranded DNA and 
transferred to a solid-phase membrane where the single-stranded DNA is immobilized by ultraviolet 
cross-linking. (© Richard C. Li.)
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However, one of the disadvantages of the MLP approach is that the interpretation of a mixed 
DNA sample from more than one individual is nearly impossible due to its complex DNA finger-
printing patterns. Therefore, MLP analysis was not widely utilized in forensic DNA laboratories.

19.1.3.2 Single-Locus Probe Technique
To resolve the disadvantages encountered in the MLP technique, probes that recognize the 
genomic DNA at the flanking regions of specific VNTR loci can be used. The probe only hybrid-
izes to a single VNTR locus and the technique is called the single-locus probe (SLP), as depicted 
in Figure 19.7. SLP generates a simple pattern called a DNA profile, consisting of one band for a 
homozygote and two bands for a heterozygote per locus. In order to improve the discriminating 
power of the test, SLP analyses of different VNTR loci can be performed by using different probes 
sequentially with a single locus at one time. SLP can analyze mixed DNA samples from two or 
more contributors. The sizes of fragments can be estimated and converted into a numerical form 
suitable for databasing. Therefore, DNA profiles can be compared among different laboratories.

Probe: 33.15 
M   B   U   U   U X   M   B   U   U   U 

Probe: 33.6 

Figure 19.6 First application of DNA fingerprinting. The MLP method was used to analyze samples 
for an immigration case. M, mother; U, three undisputed children; B, male child in dispute; X, an 
unrelated individual. All bands in B can be traced back to M or U. (From Jeffreys, A.J., Nat Med, 
11, 1035, 2005. With permission.)

MLP

Locus A

Locus B

Locus C

MLP

MLP

Figure 19.5 VNTR analysis using the MLP method. The technique can detect multiple VNTR loci 
simultaneously. Restriction sites are indicated by arrows. (© Richard C. Li.)
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This technique led to the solving of a double murder case in Leicestershire in the 1980s. The 
case was the first to apply DNA evidence to a criminal investigation. DNA profiling identified 
the true perpetrator and also excluded an innocent suspect (Figure  19.8). In 1983 and 1986, 
two girls were raped and murdered. Crime scene evidence suggested that the two cases were 
committed by the same perpetrator. A young local man, Richard Buckland, was the suspect. 
However, the DNA evidence revealed that the semen samples from both crimes did not originate 
from Buckland. To solve the crimes, an investigation was carried out in which 5000 local men 
were asked to volunteer DNA samples for testing. Several months after the investigation, a wit-
ness tipped off police that a man named Pitchfork had paid someone for giving a blood sample 
as Pitchfork’s. In 1987, Pitchfork was arrested. It was discovered that Pitchfork’s DNA profile 
matched that of the crime scene evidence. He was sentenced to life imprisonment. This case 
demonstrated the great potential of DNA profiling in forensic investigations. Consequently, SLP 
became a common method in most forensic laboratories in the late 1980s–1990s.

19.1.4 Detection
To detect VNTR loci, a labeled SLP probe is hybridized to the target sequence of DNA, which 
has been immobilized on a solid matrix such as a piece of nylon membrane (see Southern 

SLP

Figure 19.7 VNTR analysis using the SLP method. The technique can detect a single VNTR locus. 
Restriction sites are indicated by arrows. (© Richard C. Li.)

A B S C D E S 

Figure 19.8 First application of DNA profiling in a criminal investigation using the SLP method. A, hair 
roots from the first victim; B, a mixture of semen and vaginal fluid from the first victim; C, blood from 
second victim; D, a vaginal swab from the second victim; E, a semen stain on clothing from the second 
victim; S, blood from the suspect. Alleles (arrows) are matched with the profiles of the two cases but 
not with the suspect profile. (From Jeffreys, A.J., Nat Med, 11, 1035, 2005. With permission.)
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transfer, Section 19.1.2). Any unbound probes are washed away so that they do not interfere 
with the signal. Two types of detection systems are used for VNTR analysis. Radioisotope 
labeling, such as with a 32P-labeled probe, can be used. The hybridized probe can be detected by 
exposing the membrane to a sheet of x-ray film to generate an autoradiograph. Alternatively, an 
enzyme-conjugated probe can also be used. Alkaline phosphatase (Section 9.2.2) is an example 
of an enzyme used in this type of probe. Its enzymatic activity can be detected with chemilu-
minescent substrates. A chemiluminescent signal can be detected by exposure to x-ray film as 
well.

In RFLP analysis, several loci are commonly analyzed sequentially using the same mem-
brane. This approach has the advantage of not consuming additional DNA samples, which 
are often limited in forensic cases. When probing for multiple loci, multiple probes for each 
locus are sequentially hybridized and removed one at a time. Once the analysis of the first 
probe is completed, the probe is removed by a procedure called probe stripping, which is car-
ried out under conditions such as high-temperature washing to denature the DNA strands 
(Chapter  17). The probe for the next locus to be analyzed is then hybridized to the same 
membrane, and the process is repeated for each probe to be tested.

Typically, a size standard is utilized on each gel. Band sizes can thus be estimated by com-
parison to these standards. However, the VNTR alleles that differ by only one or two repeat 
units are usually not distinguishable. For this reason, genotypes can be determined by bins 
but not discrete alleles. A bin is a range of DNA fragments that differ by only a few repeat 
units. A sample with a known VNTR genotype is also utilized on each gel as a positive con-
trol where historically a genomic DNA sample from cell line K562 (a human erythroleukemic 
cell line) was used for the positive control. DNA samples to be compared can be loaded side 
by side on the same gel. As a result, the patterns of VNTR fragments can be compared from 
sample to sample. The following possible conclusions can be made. If the VNTR fragments 
are at corresponding positions (profiles match), they are considered to be a match (inclusion). 
Chapter 25 evaluates and discusses the strengths of the results. If the profiles are different, 
the two DNA samples are considered to have come from different origins (exclusion).

19.1.5 Factors Affecting RFLP Results
The accuracy of VNTR profiling results can be affected by certain factors such as sample 
conditions, genetic mutations, and experimental artifacts appearing during the procedure. 
Consequently, these factors can impact data interpretation and are explained in the following 
sections.

19.1.5.1 DNA Degradation
RFLP analysis requires the genomic DNA to be intact. DNA degradation results in damage 
such as creating nicks and breaks in the strand. The more severe the degradation, the smaller 
the average size of the DNA fragments. When the average size of DNA fragments becomes too 
small, the allele may not be detected. Many VNTR tandem arrays can span several kilobases in 
length. In theory, large alleles are more likely to be affected by degradation than smaller alleles 
at a different locus.

A two-banded heterozygous profile can be observed as a one-banded homozygous pro-
file if the larger band is not detected due to degradation. This artifact could lead to a false 
determination of exclusion. However, DNA degradation can be detected prior to conducting 
RFLP by the use of agarose gel electrophoresis, also known as a yield gel, used for evaluating 
the yield and integrity of the isolated genomic DNA. High-molecular-weight genomic DNA 
bands are usually observed for a typical genomic DNA sample. In contrast, a smear of low-
molecular-weight DNA bands can be observed if DNA is degraded. The sizes of the DNA can 
be estimated by comparison to a size standard run on the same gel. Additionally, the yield of 
DNA can be estimated by comparing the intensity of the size standards with a known quan-
tity of DNA.
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19.1.5.2 Restriction Digestion–Related Artifacts
19.1.5.2.1 Partial Restriction Digestion
Complete restriction digestion should be achieved for RFLP analysis. If partial digestion occurs, 
the partially cleaved DNA strands are longer than the cleaved fragments (Figure 19.9). Thus, 
partial digestion results in a mixture of fragments with correct sizes and slightly larger frag-
ments. Under these conditions, a larger uncleaved band, usually lower in intensity than the true 
bands, can be observed. The multibanded pattern due to the partial digestion can be observed at 
multiple loci analyzed in the same nylon membrane.

Detection of more than two bands in an RFLP profile may lead to a false interpretation and be 
incorrectly concluded to be a mixture. However, partial digestion can be detected after restric-
tion digestion. DNA cleavage by restriction endonuclease digestion can be examined using aga-
rose gel electrophoresis. A small portion of a sample can be analyzed. After separation using 
electrophoresis, a smear of various sizes of cleaved DNA fragments can usually be observed if 
restriction digestion is completed. Conversely, high-molecular-weight genomic DNA can still 
be observed from partially digested DNA samples. Additionally, comparisons can be made 
between the sample and uncleaved and completely cleaved standard samples of DNA. This quick 
assay is also called a test gel, used to determine if the DNA was cleaved to completion.

If partial digestion occurs, procedures such as additional purification of the DNA sample can 
be carried out. Additionally, optimal amounts of DNA, restriction enzymes, buffer, and proper 
incubation conditions should be used in achieving complete digestion.

19.1.5.2.2 Star Activity
Star activity refers to a deviation of the specificity of a cleavage site of a restriction endonuclease 
under certain conditions, such as a high concentration ratio of enzyme to DNA, the use of non-
optimal buffers for restriction digestion, prolonged digestion time, the substitution of Mg2+ with 
other divalent cations, and the presence of organic solvents such as ethanol and concentrated 
glycerol. For instance, HaeIII cleaves at the GGCC DNA sequence. When star activity occurs, 
the enzymatic specificity is reduced and cleaves at a sequence slightly different from GGCC. 
If the start site is presented at an internal location of a VNTR locus, the enzyme would cleave 
the GGCC sequences and additionally cleave at the internal star site (Figure 19.10). This would 
result in an additional band smaller than the true alleles, although the intensity of this band is 
usually not the same as other bands. Thus, a multiband pattern is observed. However, the star 

HaeIII HaeIII

Correct size (complete digestion)

Incorrect size (partial digestion)

HaeIII
SLP

Figure 19.9 Effects of partial restriction digestion on the RFLP profile. Only the restriction fragments 
detectable by the probe are shown. HaeIII restriction sites are indicated by arrows. (© Richard C. Li.)

HaeIII
SLP

Star site HaeIII

Correct size
Incorrect size (star activity)

Figure 19.10 Star effects on RFLP profiles. Only the restriction fragments detectable by the probe 
are shown. HaeIII restriction sites and star sites are indicated by arrows. (© Richard C. Li.)
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site presented externally to a VNTR locus cannot be detected by the probe and does not affect 
the profiling results. Star activity can usually be avoided by carrying out restriction digestion 
reactions under conditions recommended by their manufacturers.

19.1.5.2.3 Point Mutations
A point mutation is caused by the substitution, deletion, or insertion of a single nucleotide. Point 
mutations at a restriction site within flanking regions may abolish the site, and the result is a 
band slightly larger than the true allele (Figure 19.11). The point mutation may also be present 
internally in a VNTR sequence. If such a point mutation creates a restriction enzyme site, the 
enzyme will cleave at the regular site and at the mutation site and yield two smaller bands. If 
the created restriction site is located internal to the probe binding region, both bands will be 
detected for that allele. These rare mutations obey Mendelian inheritance.

19.1.5.3 Electrophoresis and Blotting Artifacts
19.1.5.3.1 Partial Stripping
If more than one VNTR locus is analyzed sequentially using the same membrane, a probe must 
be removed by the stripping process before the application of the next probe. Any probe remain-
ing on the membrane due to partial stripping may generate additional bands when the next 
probe is analyzed. However, bands due to partial stripping are usually faint and have the same 
electrophoretic mobility as the previous autoradiograph.

19.1.5.3.2 Separation Resolution Limits and Band Shifting
Agarose gel electrophoresis cannot resolve restriction fragments that differ by one or a 
few repeat units, especially for high-molecular-weight fragments. These bands may not be 
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Figure 19.11 Effects of point mutations on the RFLP profile. Only the restriction fragments detect-
able by the probe are shown. HaeIII restriction sites are indicated by arrows. (a) Point mutation (in 
red) abolishes the HaeIII restriction site. (b) A point mutation (in red) creates an internal HaeIII 
restriction site residing within the probe-binding region. (c) A point mutation (in red) creates an 
internal HaeIII restriction site residing outside the probe-binding region. (© Richard C. Li.)
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separated and will appear as a single band. This may lead to a false interpretation as a homo-
zygous profile. Additionally, minor variations in the electrophoretic mobility of DNA frag-
ments, known as band shifting, can cause two samples from the same individual to appear 
different.

19.1.5.3.3 Bands Running off Gel
The commonly used VNTR loci generate bands from hundreds of base pairs to 20  kb in 
length. The small bands have higher electrophoretic mobility and may run off the front edge 
of a gel during electrophoresis and fail to be detected. This phenomenon may also lead to a 
false interpretation as a homozygous profile. To prevent these DNA fragments from running 
off the gel into the buffer tank, a longer gel can be used. Alternatively, the electrophoresis can 
be stopped before the dye front, the furthest extent that dyes migrate, reaches the front edge 
of the gel.

19.2 Amplified Fragment Length Polymorphism
The RFLP analysis of VNTR profiling does not perform well for degraded or limited quanti-
ties of DNA from crime scene samples. For these reasons, an improved VNTR method was 
developed. Some VNTR loci have relatively short alleles (<1 kb). These loci are suitable for PCR 
amplification. This technique is called amplified fragment length polymorphism (AFLP). One 
locus, D1S80, was used by forensic DNA laboratories for AFLP analysis. Fragments in the range 
of 14–42 repeat units (16 bp per repeat) were amplified using the AFLP method (Figure 19.12). 
The amplified DNA fragments were commonly separated according to size using polyacryl-
amide gel electrophoresis and detected using a silver stain (Figure 19.13).

D1S80 loci are detected as discrete alleles and thus can be compared directly to an allelic 
ladder (a collection of common alleles used as a standard) on the same gel. This technique rep-
resented an improvement over the RFLP system. RFLP allele sizing cannot be performed with 
precision and the resolution limits of agarose gel electrophoresis are much lower than those of 
the polyacrylamide gels.

The AFLP technique requires less DNA than the RFLP method and performs better for 
degraded samples. The AFLP method at the D1S80 locus can be analyzed in a multiplex fashion 
with an amelogenin locus (Chapter  21). The amelogenin gene is used for forensic sex-typing 
applications. Typing the amelogenin gene enables the determination of the sex of the contribu-
tor of a biological sample.

Due to the wide variation in allele sizes at the D1S80 locus, preferential amplification may be 
observed. Under certain conditions, the larger alleles may not be as consistently amplified as the 
small alleles, which may cause lower signal intensity of the larger allele. Additionally, only one 
locus is analyzed in this system. Furthermore, the D1S80 locus contains two alleles that are very 
common in some populations. Thus, the discriminating power is reduced compared to RFLP. 
D1S80 was gradually replaced by multiplex STR systems in the late 1990s.

Primer

Primer

Core repeat region

GAGGACCACCAGGAAG

Figure 19.12 VNTR locus D1S80 (chromosome 1p). Each repeat unit is 16 bp long. PCR primers 
are indicated to amplify the core repeat region.
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20
Autosomal Short Tandem 

Repeat Profiling
A short tandem repeat (STR) is a region of genomic DNA containing an array of short repeating 
sequences. STRs are also called microsatellites or simple sequence repeats. A STR repeat unit 
can be several base pairs (bp) in length. Arrays range from several to approximately a hundred 
repeat units, which are the component of repetition. The number of STR repeat units varies 
among individuals. The most commonly used STR loci are 100–500 bp in length, which are 
shorter than the smallest variable number tandem repeats (VNTRs) (approximately 1000 bp). 
Thus, STR loci have many advantages compared to VNTR loci:

  STR loci can be amplified by PCR.

  STR profiling can be carried out for degraded DNA samples.

  Preferential amplification is reduced at STR loci.

  The resolution of electrophoretic separation of STR fragments is superior.

  STR loci are suitable for multiplex amplification.

Additionally, STR profiling, as with VNTR profiling, is suitable for the interpretation of 
mixed DNA profiles from multiple individuals. Thus, STR loci are better candidates for forensic 
DNA testing than VNTR loci. This chapter will discuss autosomal STR profiling. Male-specific 
Y chromosomal STR will be discussed in Chapter 21.

20.1 Characteristics of STR Loci
More than 105 STRs exist in the human genome. Many STRs have been characterized and used 
in various types of studies such as genetic mapping and linkage analysis. Some STRs have been 
characterized specifically for forensic DNA profiling.

20.1.1 Core Repeat and Flanking Regions
The core repeat region of each STR locus contains tandemly repeated sequences. The designation 
of genotypes for human identification is based on the number of tandem repeat units at a STR 
locus, which varies among human individuals (Figure 20.1). The flanking regions surrounding 
the core repeat region are also needed for STR analysis. PCR primers complementary to these 
flanking regions are used, allowing the core repeat regions to be amplified.
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20.1.2 Repeat Unit Length
Repeat unit length is the number of nucleotides in a single repeat unit. Dimeric, trimeric, tetrameric, 
pentameric, and hexameric repeat units appear in the human genome. For example, dimeric and 
trimeric repeats are very abundant, but they are not usually used for forensic applications. High fre-
quencies of stutter peaks (Section 20.4.2.1) that interfere with genotype interpretation are observed 
when dimeric and trimeric repeats are amplified. On the contrary, only a few thousand pentameric 
repeats and a few hundred hexameric repeats exist in the human genome. The pentameric and 
hexameric repeats are very polymorphic. Only a few pentameric and hexameric repeats are used 
for forensic applications because they are less abundant in the human genome. The human genome 
has at least 104 tetrameric repeats representing approximately 9% of the total STRs. The STRs with 
tetrameric repeats are very polymorphic. When they are amplified by PCR, this category of STRs 
exhibits fewer frequencies of stutter peaks than STRs with dimeric and trimeric repeats. Therefore, 
the most commonly used STR loci for forensic DNA profiling are the STRs with tetrameric repeats.

20.1.3 Repeat Unit Sequences
STR loci compatible for forensic use can be divided into several classes based on their repeat unit 
sequences. Figure 20.2 shows representative examples of core repeat sequences. Simple repeats con-
sist of tandem repeats with identical repeat unit sequences (Figure 20.2a). Allele designation is 
based on the number of repeat units in the core repeat region. For example, a D5S818 allele consist-
ing of ten repeating units of the tetrameric nucleotide sequence AGAT is designated as allele 10. 
Compound repeats consist of more than one type of simple repeat (Figure 20.2b). Complex repeats 
contain several clusters of different tandem repeats with intervening sequences (Figure 20.2c).

Flanking region Flanking region

TAGA

Core repeat region

Figure 20.1 Core repeat and flanking regions of CSF1PO STR locus. It consists of eight repeating 
units of tetrameric nucleotides (TAGA); thus, it is designated as allele 8. (© Richard C. Li.)

AGAT(a)

(b)

(c)

TCTA
TCTG

TCTA
TCTG

Intervening sequence

Figure 20.2 Examples of core repeat sequences. (a) A simple repeat in which D5S818 [AGAT]10 
is designated as allele 10, consisting of 10 repeating units of the tetrameric nucleotides, AGAT. 
(b) Compound repeats. Allele 14 of D8S1179 consists of two types of repeating units: [TCTA]2, 
[TCTG]1, and [TCTA]11. (c) Complex repeats. Allele 24 of D21S11 contains several clusters of dif-
ferent tandem repeats, [TCTA]4, [TCTG]6, and [TCTA]6, with a 43 bp intervening sequence: [TCTA]3 
TA [TCTA]3 TCA [TCTA]2 TCCATA. (© Richard C. Li.)
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Nonconsensus alleles with partial repeat units also appear in the population. These noncon-
sensus alleles, also known as microvariants, differ from common alleles by one or more nucleo-
tides. They are designated by the number of consensus repeats, followed by a decimal point and 
the number of nucleotides of the partial repeat, for example, the TH01 allele 9.3 is 1 nucleotide 
shorter than allele 10.

Another type of nonconsensus allele can result from a limitation of STR analysis. These alleles 
have the same number of tandem repeats as common alleles but contain different sequences. 
These microvariants cannot be distinguished by STR profiling because their length is identical 
to the lengths of common alleles.

20.2 STR Loci Commonly Used for Forensic DNA Profiling
In the early 1990s, STR loci were initially utilized for genetic studies and were later applied 
to forensic DNA profiling. The first STR multiplex system, known as the quadruplex, was 
developed by Forensic Science Services in the United Kingdom. It consisted of four STR loci 
(F13A1, FES, TH01, and VWA) with a population match probability (Pm) of 10–4 (Figure 20.3). 
Pm measures the discriminating power of an STR locus used for forensic DNA analysis. The 
lower the Pm (i.e., the higher the discriminating power), the less likely a match will occur 
between two randomly chosen profiles from different individuals (Chapter 25). In 1995, the 
first national DNA database was established in the United Kingdom. It contained six STR loci, 
also known as the second-generation multiplex (SGM), consisting of D8S1179, D18S51, D21S11, 
FGA, TH01, and VWA, with a Pm value of 10–7. The SGM system also included the amelogenin 
locus (Section 21.3.1) for determining the sexes of DNA contributors. Subsequently, four addi-
tional loci were added to SGM with a Pm as low as 10–13 (SGM Plus).

To allow for international data exchange, the European DNA Profiling Group (EDNAP) rec-
ommended the use of TH01 and VWA loci for all participating European laboratories in 1996. 
In 1998, the European Standard Set (ESS) of loci was established and included TH01, VWA, 
FGA, and D21S11 for forensic use in Europe. Thereafter, D3S1358, D8S1179, and D18S51 loci 
were added to the ESS. Other loci are used as well, such as SE33, which is used in Germany’s 
database. In 1998, the US Federal Bureau of Investigation established the Combined DNA Index 
System (CODIS). It contains 13 core STR loci plus the amelogenin sex-typing locus with a Pm 
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Figure 20.3 DNA profile obtained using the first STR multiplex system: the quadruplex. F13A1, 
FES, TH01, and VWA loci are shown. (© Richard C. Li.)
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Table 20.1 Common STR Loci

Locus 
Symbol Repeat Motif

Repeat 
Category

Cytogenetic 
Map Location 

on Chromosome

Distance 
from pter 

(Mb) Structural Gene

CSFIPO TAGA Simple 5q33.1 149.4 Intron 6 of 
c-fms 
protooncogene

FGA [CTTT] [CCTT] Compound 4q31.3 155.5 Intron 3 of 
fibrinogen α 
chain gene

TH01 AATG Simple 11p15.5 2.2 Intron 1 of 
tyrosine 
hydroxylase 
gene

TPOX TGAA Simple 2p25.3 1.5 Intron 10 of 
thyroid 
peroxidase gene

SE33/
ACTBP2

AAAG Complex 6q14 89 5′ Flanking 
sequence of 
β-actin-related 
pseudogene 2 
gene

VWA [TCTG] [TCTA] Compound 12p13.31 6.1 Intron 40 of von 
Willebrand 
factor gene

D1S1656 [TAGA] [TAGC] Compound 1q42.2 230.9 Anonymous

D2S441 [TCTA] [TCAA] Compound 2p14 68.2 Anonymous

D2S1338 [TGCC] [TTCC] Compound 2q35 218.9 Anonymous

D3S1358 [TCTG] [TCTA] Compound 3p21.31 45.6 Anonymous

D5S818 AGAT Simple 5q23.2 123.1 Anonymous

D7S820 GATA Simple 7q21.11 83.8 Anonymous

D8S1179 [TCTA] [TCTG] Compound 8q24.13 125.9 Anonymous

D10S1248 GGAA Simple 10q26 –a Anonymous

D12S391 [AGAT] [AGAC] Compound 12p13.2 12.5 Anonymous

D13S317 TATC Simple 13q31.1 82.7 Anonymous

D16S539 GATA Simple 16q24.1 86.4 Anonymous

D18S51 AGAA Simple 18q21.33 60.9 Anonymous

D19S433 [AAGG] [TAGG] Compound 19q12 30.4 Anonymous

D21S11 [TCTA] [TCTG] Complex 21q21.1 20.6 Anonymous

D22S1045 ATT Simple 22q12.3 37.5 Anonymous

Source: Ensembl Homo sapiens version 75.37 (GRCh37). Mb, megabase.
a Locus is not mapped to the assembly in the current Ensembl database.
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of 10–15. As the database grows rapidly, the chances of finding incidental matches among DNA 
profiles are increasing. Recently, additional loci have been added to CODIS and ESS core loci 
to reduce the likelihood of adventitious matches, as well as to facilitate international data shar-
ing among law enforcement agencies and to improve the discrimination power of forensic STR 
analysis.

Commonly used STR loci characterized for forensic DNA profiling are summarized in 
Tables 20.1 and 20.2. To achieve low Pm in forensic STR profiling, desired STR loci should pos-
sess certain characteristics as described below. First, the alleles of STR loci selected should be 
highly variable among individuals. Second, if more than one locus is selected, the loci should 
not be linked to each other or inherited together (Section 21.2). The STR loci utilized are usually 
located at different chromosomes to ensure that they are not linked. However, loci that are far 

TABLE 20.2 Core STR Loci

Locus SGM SGM Plus ESS ESS-Extended CODIS CODIS-Extended

Amel ☑ ☑ ☑ ☑ ☑ ☑

CSFIPO ☑ ☑

D1S1656 ☑ ☑

D2S441 ☑ ☑

D2S1338 ☑ ☑

D3S1358 ☑ ☑ ☑ ☑ ☑

D5S818 ☑ ☑

D7S820 ☑ ☑

D8S1179 ☑ ☑ ☑ ☑ ☑ ☑

D10S1248 ☑ ☑

D12S391 ☑ ☑

D13S317 ☑ ☑

D16S539 ☑ ☑ ☑

D18S51 ☑ ☑ ☑ ☑ ☑ ☑

D19S433 ☑ ☑

D21S11 ☑ ☑ ☑ ☑ ☑ ☑

D22S1045 ☑ 2

DYS391 ☑

FGA ☑ ☑ ☑ ☑ ☑ ☑

THO1 ☑ ☑ ☑ ☑ ☑ ☑

TPOX ☑ 1

VWA ☑ ☑ ☑ ☑ ☑ ☑

SE33 3

Source: Hares, D.R., Forensic Sci Int Genet, 6, e135, 2012; Gill, P., et al., Forensic Sci Int, 
156, 242–244, 2006.

☑, minimum required loci; 1–3, recommended loci in ranked order of preference.
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enough apart on the same chromosome can still be used (Figures 20.4 and 20.5), since they are 
not linked. Additionally, STR loci with fewer amplification artifacts such as stutter products are 
desired. Stutters can complicate the interpretation of profiles derived from a mixed DNA sample 
from more than one contributor. Moreover, STR loci with short amplicon (amplified product) 
lengths are preferred for multiplex STR analysis and the testing of degraded DNA samples.
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Figure 20.4 Cytogenetic map showing the locations of STR markers on chromosome 5. CSF1PO 
and D5S818 are separated by 26 Mb (megabases). (© Richard C. Li.)
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Figure 20.5 Cytogenetic map showing the locations of STR markers on chromosome 21. D21S11 
and PentaD are separated by 24 Mb (megabases). (© Richard C. Li.)
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20.3 Forensic STR Analysis
STR loci are amplified using fluorescent dye-labeled primers. A multiplex STR system utilizes 
multiple fluorescent dyes to label each amplicon. The amplicons are separated via electrophoresis. 
The different fluorescent dye colors are resolved by the detector, and the signals corresponding 
to each DNA fragment are identified using specialized computer software. The data collection 
process generates an electropherogram that shows a profile of peaks corresponding to each DNA 
fragment. The positions of these peaks represent the electrophoretic mobility of the DNA frag-
ments. A small fragment, migrating faster than a large one, peaks earlier in the electropherogram 
than a longer fragment. The DNA fragments are sized by comparison to an internal size standard 
(Figure 20.6; Chapter 8). Figure 20.7 summarizes the work flow of a forensic STR analysis.
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Figure  20.6 Electropherogram of GeneScanTM 500 size standard (Applied Biosystems). RFU 
represents relative fluorescence unit. (© Richard C. Li.)
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PCR amplification
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Figure  20.7 Capillary electrophoresis separation of amplified STR products. Fluorescent dye-
labeled amplification products are separated and subsequently detected. Various fluorescent dye 
colors are resolved by the detector. The peaks corresponding to each DNA fragment are identified. 
(© Richard C. Li.)
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The area or amplitude of the peak, expressed as relative fluorescence units (RFU) 
(Section 9.3.1.3), reflects the fluorescent signal intensity. The RFU value of peak height is pro-
portional to the amount of DNA amplicons being analyzed. When the RFU value is very low, it 
is difficult to distinguish a signal from background noise. The manufacturer of commonly used 
instruments for forensic DNA analysis recommends 150 RFU as the threshold of detection. 
Peaks below 150 RFU should be interpreted with caution. Some forensic laboratories use lower 
thresholds, as low as 50 RFU, based on their own validation studies. In contrast, when the RFU 
value is too high, it saturates the sensitivity of an instrument as well as causing artifacts such as 
pull-up signals (Section 20.4.3.1). The maximum RFU allowed is usually 6000 RFU.

20.3.1 Determining the Genotypes of STR Fragments
As noted earlier, electropherograms are usually plotted as fluorescent signal intensity (in RFU) 
versus the sizes of the DNA fragments. The data in an electropherogram can then be converted 
into a genotype. The genotype for a specific STR locus is defined as the number of repeat units of 
the allele. STR genotype data generated from different laboratories can be compared easily and 
are suitable for databasing.

The genotype is determined by using an allelic ladder, which is important to achieve accurate 
genotype profiling. An allelic ladder is a collection of synthetic fragments corresponding to com-
mon alleles observed in the human population for a given set of STR loci (Figures 20.8 and 20.9). 
The ladders are compared to data obtained from an electropherogram of a questioned sample to 
determine the genotype. Thus, each allele in a ladder must be resolved properly in order to deter-
mine correct STR alleles for a sample. The sizes of DNA fragments of a sample are correlated to 
sizes of fragments for each allele in an allelic ladder in order to determine the allele designation 
(genotype) of a questioned sample (Figures 20.10 and 20.11). If a rare allele fails to match alleles 
within an allelic ladder, it is considered an off-ladder allele. If an off-ladder allele is present, the 
sample should be reanalyzed. The presence of a rare allele can be confirmed by repeating the elec-
trophoresis process based on the characteristic electrophoretic mobility of the rare allele.

20.3.2 Interpretation of STR Profiling Results
General guidelines for the interpretation and the reporting of STR profile results were set by the 
Scientific Working Group on DNA Analysis Methods (SWGDAM) and the DNA Commission 
of the International Society of Forensic Genetics (ISFG). Typically, conclusions are categorized 
as inclusion, exclusion, or inconclusive result.

20.3.2.1 Inclusion (Match)
Peaks of compared STR loci, such as those between the profiles of suspect and crime scene evi-
dence or victim and crime scene evidence, show identical genotypes. The strength of this conclu-
sion can be evaluated via statistical analysis and is usually cited in the case report (Chapter 25).

20.3.2.2 Exclusion
The genotypes of two or more samples differ, and the profile of the sample is determined to be 
an exclusion, meaning that the profiles originated from different sources.

20.3.2.3 Inconclusive Result
The data do not support a conclusion of inclusion or exclusion. In other words, insufficient infor-
mation is available to reach a conclusion.

20.4 Factors Affecting Genotyping Results
A number of genetics-, amplification-, and electrophoresis-related factors may affect the accu-
racy of genotypic profiles.



20.4 Factors Affecting Genotyping Results

377

20.4.1 Mutations
STR loci with low mutation frequencies are desired, in particular, for human identification in 
mass disasters and for missing person and paternity cases. However, STR mutations do occur, 
which can affect the profiling results.

20.4.1.1 Mutations at STR Core Repeat Regions
Mutations, usually resulting in a gain or a loss of a single repeat unit, are observed at STR loci. 
If a mutation occurs in the germ cells (cells that form gametes), the mutant allele will be trans-
mitted to and be present in all cell types of the progeny. This type of inheritable mutation in 
germ cell lineage is called a germ-line mutation. The frequency of germ-line mutation can be 
measured by the mutation rate, expressed as the number of mutations per generation (germ-line 
transmission). The average mutation rate of commonly used STR loci is about 10−4 mutations per 
germ-line transmission. However, the mutation rate may vary among different STR loci.
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Figure 20.8 Electropherogram of the allelic ladder of the AmpFlSTR® COfiler® PCR Amplification Kit 
(Applied Biosystems). AMEL, CSF1PO, D3S1358, D7S820, D16S539, TH01, and TPOX loci are shown. 
(© Richard C. Li.)
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In contrast, somatic mutations involve the mutation of only somatic cells. The germ cells are not 
affected, and thus a mutant allele is not transmitted to the progeny. A somatic mutation occurring 
at the core repeat region of an STR locus can be detected and compared to the wild-type allele. The 
ratio of the signal intensities of the wild-type and mutant alleles varies, depending on the number 
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of mutation-carrying cells in the tissue. Somatic mutations are usually tissue specific. STR profiles 
from different tissues of the same individual can be compared if a somatic mutation is suspected.

20.4.1.2 Chromosomal and Gene Duplications
Duplicating one of the homologous chromosomes results in a total of three copies of a particular 
chromosome. This condition, called trisomy, is rare and often associated with genetic diseases 
such as Down’s syndrome (chromosome 21 duplication). Duplications have also been observed 
in chromosomes 13, 18, and X. Other anomalies include duplication of a portion of a chromo-
some and a single or group of genes instead of an entire chromosome.

A duplication bearing a mutation within the STR core repeat region can affect the number of 
tandem repeat units. If the duplicated locus is mutated, a triallelic or three-peaks pattern can be 
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Figure 20.11 Individual DNA profile (Identifiler). The genotype of the DNA profile is shown. AMEL: 
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detected at a single locus, but not at loci located at other chromosomes in a multiplex STR profile 
(Figure  20.12). The three alleles usually have equal signal intensity (peak amplitude or peak 
area). Triallelic patterns at STR loci commonly used for forensic DNA analysis have been docu-
mented. Many occur at the TPOX, FGA, and CSF1PO loci. If the duplicate locus is not mutated, 
only two alleles will be observed in a heterozygote. However, the ratio of the peak amplitude of 
the alleles will be 1:2 (one copy vs. two copies including the duplicate) at that particular locus. 
However, STR profiles at the loci located at other chromosomes are not affected.

20.4.1.3 Point Mutations
Point mutations involve the changing of a nucleotide sequence through nucleotide substitu-
tion, insertion, or deletion. Insertion or deletion mutations affect the lengths of the core repeat 
regions and the amplified flanking regions of STR loci and thus affect STR profiles. Nucleotide 
substitution mutations (except those residing within the primer-binding regions) do not affect 
the length of DNA and thus do not affect STR profiles.

However, mutations occurring at the primer-binding sequences of the flanking regions of 
STR loci may affect genotype results. If a mutation at a primer-binding sequence prevents the 
primer from annealing to the template, this leads to a complete failure of the amplification of 
the allele. This phenomenon is known as a null allele or silent allele (Figure 20.13). To over-
come the consequences of a null allele, an alternative primer annealing to a flanking region 
away from the mutated sequence can be used. Additionally, a primer with the sequence that is 
complementary to the known mutation can also be used. If the mutation does not completely 
prevent the primer from annealing but reduces the efficiency of the amplification, the resulting 
signal intensity of the allele is usually decreased. This problem may be solved by modifying the 
condition of amplification for the mutant allele.
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DNA size (bp)
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Figure 20.12 Triallele. In this example, the triallele is observed only at D21S11 and not at other 
STR loci. (© Richard C. Li.)
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Figure 20.13 Null allele. An allele present in the sample failed to be amplified by one of the primer 
sets as a result of a rare mutation at the primer-binding sequence of the flanking region: (a) wild 
type and (b) mutation. (© Richard C. Li.)
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20.4.2 Amplification Artifacts
20.4.2.1 Stuttering
A stutter is a minor allele peak, also known as a stutter peak, whose repeat units are shorter or 
longer than the parental allele peak (Figure  20.14). Less stuttering is observed with pentam-
eric and hexameric repeat unit loci compared to shorter repeat unit loci. The loci that contain 
complex repeat sequences usually exhibit reduced stuttering. At a given STR locus, large alleles 
appear to yield more stutter than smaller alleles.

Commonly observed stutters are one repeat unit shorter than the parental allele. It is believed 
that stuttering is due to the slippage of polymerase, which may have occurred during amplifica-
tion reactions (Figure 20.15). Stutters with repeat units longer than the parental allele peak can 
also be observed, but are very rare. The stutter ratio is defined as the area of the stutter peak 
divided by the area of the parental peak. The stutter ratio is usually less than 0.15. A ratio of 
greater than 0.15 should be interpreted with caution due to the potential presence of DNA from 
more than one contributor.

5′ 1 2 4

1 2 4

3

5 63′

DNA
polymerase

Figure 20.15 Proposed mechanism for stutter products. During the DNA synthesis step of PCR 
amplification, a DNA polymerase slips, and a region of the primer–template complex becomes 
unpaired, causing the template strand to form a loop. The consequence of this one-repeat loop is a 
shortened PCR product smaller than the template by a single repeat unit. (© Richard C. Li.)
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Figure 20.14 Stutter products. (© Richard C. Li.)
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20.4.2.2 Nontemplate Adenylation
During PCR amplification, DNA polymerase often adds an extra nucleotide, usually an adenos-
ine, to the 3′-end of an amplicon. Such a phenomenon is referred to as a nontemplate addition 
resulting in an amplicon that is one base pair longer than the parental allele (designated the +A 
peak), as shown in Figure 20.16. As a result, an amplicon has both the –A amplicon, which cor-
responds to the size of the parental allele, and the +A amplicon, which represents the amplicon 
with the nontemplate addition. To simplify the analysis, the most commonly used multiplex 
STR kits utilize amplification conditions that favor the adenylation of amplicons. Thus, most 
amplicons in a sample contain an additional adenosine at the 3′ end (+A peak). However, partial 
nontemplate addition can occur when too much DNA template is utilized in PCR amplification. 
As a result, a mixture of –A and +A peaks is usually observed.

20.4.2.3 Heterozygote Imbalance
Heterozygote imbalance occurs when one of the alleles has greater peak area or amplitude than 
the other allele within the same locus in which the two alleles of a heterozygote are compared 
(Figure 20.17). It is believed that heterozygote imbalance may arise if the DNA sample contains 
unequal copies of DNA template of the two alleles for the heterozygote, or the two alleles of a het-
erozygote are unequally amplified, a condition known as preferential amplification. Preferential 
amplification usually refers to an event where a smaller allele is amplified more efficiently than 
larger ones. As a result, the presence of heterozygote imbalance interferes with the interpreta-
tion of samples with a DNA mixture derived from more than one contributor.

20.4.2.4 Allelic Dropout
Allelic dropout occurs when an allele, usually one of the heterozygote alleles, fails to be detected. 
To date, our understanding of what causes the dropout is very limited. The occurrence of allelic 
dropout can be the result of an extreme situation of preferential amplification or heterozygote 
imbalance. Additionally, certain mutations leading to amplification failure (Section  20.4.1.3) 
can cause allelic dropout.
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Figure 20.16 Nontemplate adenylation. OL represents the off-ladder allele. (© Richard C. Li.)
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20.4.3 Electrophoretic Artifacts
20.4.3.1 Pull-Up Peaks
A pull-up peak occurs when a minor peak of one color on an electropherogram is pulled up from 
a major allelic peak in another color (Figure 20.18) when the colors have overlapping spectra. 
For example, a green peak may pull up a yellow peak, or a blue peak may pull up a green peak. A 
pull-up peak may contribute to the inaccuracy of a profile if the position of a pull-up peak cor-
responds to the position of an allele. A pull-up peak often occurs when a sample is overloaded or 
a matrix file (a spectral calibration) is not updated. Thus, loading a proper amount of sample or 
installing an appropriate matrix file can prevent the occurrence of pull-up peaks.

20.4.3.2 Spikes
Spikes are sharp peaks, with similar signal intensities, that are present in all color panels of an 
electropherogram (Figure 20.19). Spikes are caused by air bubbles and urea crystals in the capil-
lary of an electrophoretic platform. Voltage spikes can also contribute to spike peaks. The spikes 
are electrophoretic artifacts and are not reproducible. Thus, electrophoresis can be repeated to 
verify that the spikes occurred in a previous electrophoresis result.

20.5 Genotyping of Challenging Forensic Samples
20.5.1 Degraded DNA
Environmental exposure, such as high humidity and temperature, of biological evidence can 
lead to DNA degradation such as the breaking of DNA molecules into small fragments. The 
more severe the degradation, the more intensive the fragmentation. In forensic DNA analysis, 
the size range of STR amplicons is usually 100–500 bp in length. When a sample experiences 
some degradation, large alleles are less likely to be amplified than small alleles (Figures 20.20 
and 20.21). As a result, the dropout of large alleles often occurs, leading to a partial DNA pro-
file or even a failure in obtaining a DNA profile. To address this issue, the PCR primers can be 
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Figure 20.17 Heterozygote imbalance. The signal intensity of one allele is greater than that of the 
other allele within the same locus. (© Richard C. Li.)
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Figure 20.18 Pull-up peaks. The peaks with overlapping spectra observed in the top and middle 
panels are not observed in the bottom panel. (© Richard C. Li.)
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Figure 20.19 Spike peaks can be observed in various intensities. (© Richard C. Li.)
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redesigned to anneal more proximally to the STR core repeat region than standard STR primers, 
yielding small amplicons also known as miniSTRs. Using the miniSTR strategy, more alleles 
can be detected in degraded DNA samples than using the standard STR primers.

20.5.2 Low Copy Number DNA Testing
Low copy number (LCN) DNA analysis involves the testing of very small amounts of DNA 
(<100 pg) in a sample. LCN DNA analysis is often needed for samples derived from evidence 
such as fingerprints and tools and weapons handled by perpetrators. STR analysis of extremely 
low levels of human DNA can be achieved by increasing the number of PCR cycles (e.g., increas-
ing from 28 to 34 cycles) to improve the yield of amplicons, thus improving the sensitivity of 
the analysis.

However, this approach also increases the appearance of artifacts that can make interpreta-
tion difficult. For instance, the occurrence of allele dropout, heterozygote imbalance, and stut-
tering is frequently observed in LCN DNA analysis. Additionally, allele drop-in can arise from 
contamination. The phenomenon of allele drop-in is usually not reproducible. In an LCN DNA 
analysis, genotypes can be determined if identical alleles can be detected from two independent 
amplification reactions.

20.5.3 Mixtures
Samples of DNA from two or more contributors are commonly encountered in forensic cases 
such as sexual assaults in which the evidence recovered from a victim is mixed with a suspect’s 
bodily fluids (Figure  20.22). The interpretation of DNA profiles of mixed stains is known as 
mixture interpretation, which is described below:

 1. To determine the presence of a mixture: First, determine whether the source of the 
DNA in the sample came from one or more individuals by examining the number of 
alleles at multiple loci. The characteristics listed below usually indicate a mixture:

 a. Severe heterozygote imbalance.
 b. Stutter ratio above 0.15.
 c. Presence of three or more alleles per locus at multiple loci.
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Figure 20.20 Diagram of STR profiles of samples: without DNA degradation (top) and with degra-
dation (bottom). Arrow: allelic dropout. (© Richard C. Li.)
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Additionally, caution should be taken to distinguish the presence of a mixture and various 
artifacts such as stutters and nontemplate adenylation.

 2. To determine the genotypes of all alleles and to identify the number of contributors: 
Note that the maximum number of alleles at any given locus is two per individual. In 
the case of homozygous or allele overlap, the number of alleles observed can be less 
than two per individual.

 3. To estimate the ratios of the contributions: Determine the relative ratios of the con-
tributions to the mixture made by each individual by comparing the peak areas or 
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Figure 20.22 DNA profiles of mixed bodily fluids. (a) DNA profile of mixed stains from evidence, 
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amplitudes. Amelogenin, a sex-typing marker, is useful in determining the genders of 
DNA contributors.

 4. To consider all possible genotype combinations: This may be done by pair-wise com-
parisons to determine the allele combinations that belong to the minor contributor 
and those that belong to the major contributor.

 5. To compare reference samples: The final step is to compare the genotype profiles with 
the genotypes of reference samples from a suspect and victim. If the DNA profile 
of the suspect’s reference sample matches a major or minor component of the mix-
ture, the suspect cannot be excluded as a contributor.

Detailed guidance for basic steps in mixture interpretation is provided in a number of pub-
lished guidelines. For example, the Interpretation Guidelines for Autosomal STR Typing by 
Forensic DNA Testing Laboratories was recently established by the Scientific Working Group 
on DNA Analysis Methods (SWGDAM), which provides direction on DNA profiling and mix-
ture interpretation. Additionally, guidance for the statistical evaluations of the mixture analysis 
results is also provided.
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21
Sex Chromosome Haplotyping 

and Gender Identification

21.1 Y Chromosome Haplotyping
21.1.1 Human Y Chromosome Genome
The Y chromosome is inherited from the father and is passed on to all male offspring; this is 
known as patrilineage (Figure 21.1). Thus, the Y chromosome is unique to males. The chromo-
some encodes dozens of genes required for male-specific functions, including sex determination 
and spermatogenesis. The human Y chromosome genome contains approximately 59 million 
base pairs (bp) and likely contains 50–60 genes. The Y chromosome can be divided into two 
regions: the pseudoautosomal region and the male-specific Y region (Figure 21.2).

21.1.1.1 Pseudoautosomal Region
The pseudoautosomal regions (PARs) are homologous nucleotide sequences that are present on the 
X and Y chromosomes. There are two PARs on each X and Y chromosome: PAR1 and PAR2. In 
the Y chromosome, PAR1 is located on the terminal region of the short arm. The PAR1 comprises 
2.6 Mb. Twenty-four genes have been identified within the PAR1. The PAR2 of the Y chromosome is 
located at the tip of the long arm. The PAR2 comprises 320 kb, with only four genes identified so far.

The PARs play an important role in proper segregation of the X and Y chromosomes dur-
ing meiosis. During meiosis in males, the PARs allow the Y chromosome to pair with the X 
chromosome. Crossing over and recombination (Chapter 25) within the PARs of the X and Y 
chromosomes can occur. As a result, males can inherit an allele originally present on the PARs 
of the X chromosome, and females can inherit an allele originally present on the PARs of the Y 
chromosome. In particular, PAR1 plays a major role in X–Y chromosome pairing. The deletion 
of PAR1 results in failure of pairing and leads to male infertility. PAR2 is much shorter than 
PAR1, and thus shows a lower frequency of pairing than PAR1. The deletion of PAR2 exhibits 
less severe phenotypes than that of PAR1.

21.1.1.2 Male-Specific Y Region
The remainder of the Y chromosome is known as the male-specific Y (MSY) region. It was previ-
ously called the nonrecombining Y (NRY) region. The bulk of this region does not participate in 
homologous recombination. However, certain sections involve intrachromosomal gene conver-
sion, which is the nonreciprocal transfer of genomic DNA between a pair of repeated genes on 
a single chromosome; in this case, the Y chromosome. About 40 megabases (Mb) within the 
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MSY region are heterochromatic (highly repetitive sequences) including the centromeric region 
and the bulk of the distal long arm. The euchromatic region, which comprises transcriptional 
active genes, is approximately 23 Mb. Certain sections of the euchromatic region share some 
homology with the X chromosome. For instance, X-transposed sequences of the Y chromo-
some are 99% identical to sequences within Xq21 (a band in the long arm of the X chromo-
some). The X-transposed sequences are the sequences, a total of approximately 3.4 Mb in length, 
that were transposed from the X chromosome to the Y chromosome several million years ago. 
Additionally, dozens of genes located in the euchromatic region share 60%–96% homology with 
their X chromosome counterparts. The regions sharing homology with the X chromosome 
should be avoided when selecting Y chromosome–specific markers for forensic DNA profiling.

21.1.1.3 Polymorphic Sequences
The Y chromosome contains an abundance of polymorphic markers. DYF155S1, also known as 
MSY1, is the first characterized variable number of tandem repeats (VNTR) or minisatellite at 
the human Y chromosome. It consists of an array of AT-rich repeats at 25 bp per unit repeat. 
The DYF155S1 locus is highly polymorphic. The unit repeat sequence varies through base sub-
stitution. At least five different variant types of unit repeat sequences exist. Additionally, the 
numbers of these units also vary, ranging from 50 to 115 repeats. Thus, the length of alleles range 
from approximately 1200 to 2800 bp. DYF155S1 is of considerable interest as a potential marker 
in forensic testing. However, the analysis method is labor intensive, making it difficult to imple-
ment in forensic casework, such as the investigation of sex crimes. Moreover, many single nucle-
otide polymorphisms (SNPs) and mobile elements exist at the Y chromosome. However, the 
discrimination power of SNPs and mobile elements is considerably less than that of Y chromo-
some short tandem repeats (Y-STRs). To date, Y-STRs are usually used for Y chromosome DNA 
testing due to the high-throughput analysis and good discrimination power (Section 21.1.2).

Figure 21.1 Human family pedigree showing inheritance of the Y chromosome. Females and males 
are denoted by circles and squares, respectively. Red symbols indicate individuals who inherited the 
same Y chromosome.

X-transposed
sequence Centromere PAR 2PAR 1

Yp Yq

Euchromatic
MSY

Heterochromatic

Figure 21.2 Human Y chromosome structure. PAR, the pseudoautosomal region; MSY, male-specific Y 
region; Yp, the short arm of the Y chromosome; Yq, the long arm of the Y chromosome. (© Richard C. Li.)
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21.1.2 Y-STR
Y chromosome loci are very important for forensic DNA profiling, and this chapter will discuss 
such applications. For instance, the Y-STRs used in forensic DNA testing are male specific (for 
humans and certain higher primates) and are thus useful in the investigation of sexual assault 
cases involving male suspects. The evidence gathered in such cases usually consists of a mixture 
of high levels of female DNA and low levels of male DNA. The Y chromosome–specific loci can 
be examined without interference from large amounts of female DNA; differential extraction of 
sperm and nonsperm cells may not be needed. Furthermore, the Y-STR system is useful for deter-
mining the numbers of unrelated male perpetrators in sexual assault cases. The Y-STR loci used 
for forensic applications are located in the nonrecombining section of the Y chromosome so that 
patrilineage can be established. The technique can be used for paternity testing and the identifica-
tion of missing persons. Finally, data interpretation can be simplified by the use of a single allele 
per Y-STR locus profile at most loci. Reference databases are available for estimating Y-STR hap-
lotype frequencies among various human populations for statistical analysis of profiling results.

The major disadvantage of Y-STR loci is that their discriminating power is lowerthan that of 
autosomal loci. Because Y chromosome loci are linked, the product rule for statistical calcula-
tions for profile probability does not apply. Chapter 25 discusses the statistical evaluation of the 
strength of the matches. Also, the current Y-STR profiling cannot distinguish individuals with 
the same patrilineage.

More than 400 STR loci have been identified in the Y chromosome genome. The precise 
locations of these loci have been sequentially mapped using human genome sequencing data. 
Most Y-STR loci, approximately 60% of the 400 identified, are located on the long arm of the 
chromosome; about 22% are located on the short arm and a few are found in the centromeric 
region (Figure 21.3). Y-STRs in the telomeric region have yet to be identified. Only about 5% 
of Y-STRs are located within 5′ untranslated or intron regions of protein-coding genes. The 

p11.32
p11.31

p11.2

DYS393 (3.17 Mb)
DYS19 (10.12 Mb)

DYS391 (12.54 Mb)
DYS439 (12.95 Mb)
DYS3891/ll (13.05 Mb)
DYS438 (13.38 Mb)

DYS390 (15.71 Mb)

DYS385 a/b (19.19, 19.23 Mb)
DYS392 (20.97 Mb)

p11.1
q11.1

q11.21
q11.221

q11.222

q11.223

q11.23

q12

Figure  21.3 Human cytogenetic map of the Y chromosome. The Y-STRs and positions are shown 
(Mb = megabase). Cytogenetic patterns with alternating dark and light bands are shown. (© Richard C. Li.)
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repeat unit lengths of identified Y-STRs have been analyzed. Among the 400 Y-STRs, 6% are 
dimeric repeats, 39% are trimeric, 45% are tetrameric, 9% are pentameric, and 1% are hexameric 
(Figure 21.4).

Fewer than half of the Y-STRs have been characterized. Some loci are polymorphic and are 
useful for forensic applications and developing new Y-STR multiplex systems. Since homologous 
recombination does not occur on the majority of the Y chromosome, alleles of Y-STR loci are 
linked (inherited together); they are referred to as haplotypes. As a result, the discrimination 
power of Y-STRs is much lower than that of autosomal STRs. The most commonly used Y-STR 
loci for forensic testing are described below.

21.1.2.1 Core Y-STR Loci
In 1997, the European minimal haplotype locus set, also known as the minimal haplotype loci, 
was recommended by the International Y-STR User Group for forensic applications (Table 21.1; 
Figure 21.5). This haplotype set includes a core set of nine Y-STR loci: DYS19, DYS385a and b, 
DYS389I, DYS389II, DYS390, DYS391, DYS392, and DYS393. In 2003, two additional loci were 
recommended by the Scientific Working Group for DNA Analysis Methods (SWGDAM) for 
forensic DNA analysis. The SWGDAM loci include the European minimal haplotype loci plus 
two additional loci: DYS438 and DYS439 (Table 21.1).

The application Y-STR for forensic casework has been expanded with additional Y-STR 
markers. The use of Y-STR loci has been facilitated by commercially available PCR amplification 

Tetrameric
repeats 45%Trimeric

repeats 39%

Dimeric
repeats 6% Hexameric

repeats 1%

Pentameric
repeats 9%

Figure 21.4 Human Y-STRs with different repeat unit length. About 400 Y-STRs have been identi-
fied and categorized according to repeat unit length. (Adapted from Hanson, E.K. and Ballantyne, J., 
Leg Med (Tokyo), 8, 110, 2006.)

Table 21.1 Common Y-STR Core Loci

Locus EMH US Haplotype Loci Repeat Motif

DYS19 ☑ ☑ TAGA

DYS385a/b ☑ ☑ GAAA

DYS389 I ☑ ☑ TCTA

DYS389 II ☑ ☑ [TCTG] [TCTA]

DYS390 ☑ ☑ [TCTG] [TCTA]

DYS391 ☑ ☑ TCTA

DYS392 ☑ ☑ TAT

DYS393 ☑ ☑ AGAT

DYS438 ☑ TTTTC

DYS439 ☑ GATA
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kits in multiplex Y-STR systems. To improve discriminating power, multiplex systems including 
new Y-STR loci are desired. Many new Y-STR loci are being characterized for developing new 
multiplex systems. Commercially available kits with more Y-STR loci are now available and have 
been validated for forensic use (Table 21.2; Figures 21.6 and 21.7). Some of the additional Y-STR 
loci are highly discriminating, allowing for further distinction between unrelated male indi-
viduals. Additionally, Y-STR loci, such as DYS570 and DYS576, with high mutation rates (see 
rapidly mutating Y-STR loci; Section 21.1.2.3) are included, which are useful for the discrimina-
tion of related individuals.

21.1.2.2 Multilocal Y-STR Loci
DYS385 and DYS389 are multilocal Y-STR loci (MLL). The MLL designation refers to the pres-
ence of a particular STR at more than one site on the Y chromosome due to duplication. To 
date, about 50 such MLL Y-STRs have been identified. Further MLL subdivisions are designated 
bilocal, trilocal, and so on. DYS385 and DYS389 are bilocal.

The DYS385 locus has two inverted duplicated clusters and is separated by a 4 × 104 bp intersti-
tial region (Figure 21.8). It can be amplified by a single set of primers. One allele is observed if the 
duplicates are the same length. If the duplicated clusters have different lengths, they can generate 
two different alleles when amplified. The smaller allele is designated “a” and the larger allele is 
designated “b.” Moreover, the DYS389 locus has two duplicated clusters with the same orienta-
tion (Figure 21.9). In a single set of PCR primers, there are two binding sites for the same forward 
primer at each 5′ flanking sequence of the core repeat region of DYS389. These binding sites 
between DYS389I and DYS389II are about 120 bp apart. Therefore, two amplicons are produced. 
DYS389I is designated for the smaller allele, and DYS389II is designated for the larger allele.

21.1.2.3 Rapidly Mutating Y-STR
Current Y-STR loci implemented in forensic casework have adequate resolution of males from 
different patrilineages. However, most Y-STR sets have limited abilities to differentiate related 
males who belong to the same patrilineage. Thus, current forensic Y-STR profiling is not able to 
exclude patrilineal relatives of the suspect. Recently, rapidly mutating Y-STR (RM Y-STR) loci 
have been identified and characterized. The mutation rates of RM Y-STR are above 10–2, which 
is considerably higher than the average mutation rates of Y-STRs. The average mutation rate for 
the majority of the Y-STRs characterized, including the core Y-STR loci currently used in foren-
sic casework, is approximately 10–4–10–3 per generation. Due to the high mutation rates, RM 
Y-STRs can improve patrilineage resolution. For use in forensic casework, the RM Y-STR loci 
have potential abilities to differentiate both paternally related and unrelated males.

DYS19

Allele
Size

DYS390

24

1000
500

217.94

DYS389I DYS389II 800
600
400
200

14 10 26
371.09254.41192.10

Figure 21.5 Electropherogram of Y-STR profile using an early generation of multiplex of four loci. 
The genotype of the DNA profile is shown (DYS19: 14. DYS389I: 10. DYS389II: 26. DYS390: 24). 
(© Richard C. Li.)
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21.2 X Chromosome Haplotyping
X-chromosomal STR (X-STR) profiling is a useful tool in kinship testing in forensic investiga-
tions. For example, males under usual circumstances have only one X chromosome; thus males 
are hemizygous for the X-STR loci on the X chromosome. Homologous recombination between 
the X and Y chromosomes is restricted to the homologous PARs (Figure 21.2). The paternal X 
chromosome is inherited by daughters as haplotypes. Thus, father–daughter kinship is easier to 
determine using X-STRs than autosomal STRs. In females, there are two copies of the X chro-
mosomes. Homologous recombination can occur between two X chromosomes in the mother–
child transmission. Although it is possible to determine mother–child kinship using X-STR 
analysis, the level of certainty is less than that of father–daughter kinship analysis. Nevertheless, 
sharing of rare X-STR haplotypes can strengthen an indication of kinship. The most useful 

Table 21.2 Y-STR Loci Covered by Representative 
Commercial Kits

Loci Yfilera PowerPlexY23b

Core loci DYS19 ☑ ☑

DYS385a/b ☑ ☑ 

DYS389 I ☑ ☑

DYS389 II ☑ ☑

DYS390 ☑ ☑

DYS391 ☑ ☑

DYS392 ☑ ☑

DYS393 ☑ ☑

DYS438 ☑ ☑

DYS439 ☑ ☑

Additional loci DYS437 ☑ ☑

DYS448 ☑ ☑

DYS456 ☑ ☑

DYS458 ☑ ☑

DYS481 ☑

DYS533 ☑

DYS549 ☑

DYS570 ☑

DYS576 ☑

DYS635 ☑ ☑

DYS643 ☑

Y-GATA-H4 ☑ ☑
a AmpFlSTR® Yfiler® PCR Amplification Kit (Applied 

Biosystems).
b PowerPlex® Y23 System (Promega).
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application of X-STR profiling, however, is in situations where autosomal STR profiling fails to 
determine kinship with high levels of certainty, and where Y-chromosomal or mitochondrial 
DNA profiling results are inconclusive.

Many X-STR loci have been identified spanning the entire human X chromosome. Increasing 
the number of X-STR loci to be analyzed in the inherited region would increase the degree of 
certainty in determining kinship. However, it is necessary to take into consideration the link-
age between X-STR loci on the X chromosome. Based on Gregor Mendel’s first law, the different 
alleles of two loci segregate independently. This is definitely true for loci localized on different 
chromosomes. The segregation can also be observed for loci located on the same chromosome, 
including the X chromosome, due to homologous recombination and meiotic crossing-over. 
Generally speaking, the farther apart the two loci are on the chromosome in physical distance, 
the more likely those loci are to segregate independently. When two loci are very close to each 
other, the alleles of the two loci are inherited together as a haplotype. Therefore, including addi-
tional closely linked STR loci does not necessarily improve the discrimination power in kinship 
analysis.

Homologous recombination events at different regions of the genome may occur with differ-
ent probabilities. Thus, the tightness of linkage between two X-STR loci cannot be accurately 
measured based on the physical distance. In order to determine how closely two different loci are 
linked, the recombination fraction (or recombination frequency) can be used, which is the per-
centage of recombinants resulting from chromosomal crossover between two loci during meio-
sis among all the offspring. The recombination fraction reflects how often the loci are inherited 

Allele a

Allele b

Interstitial region (40 kb)

Figure 21.8 MLL Y-STR locus DYS385. At the DYS385 locus, note the two inverted duplicated 
regions of the Y chromosome with an interstitial region of 40 kilobases (kb). These inverted regions 
can be amplified with a single pair of primers (indicated by arrows) in one PCR reaction. The allele 
designations are described in the text. (© Richard C. Li.)

120 bp

Allele I
Allele II

Figure 21.9 MLL Y-STR locus DYS389. At the DYS389 locus, note the two duplicated regions of 
the Y chromosome with the same orientation. These duplicated regions can be amplified with a sin-
gle pair of primers (indicated by arrows) in one PCR reaction. The allele designations are described 
in the text. (© Richard C. Li.)
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together or how often they are separated. The recombination fraction ranges from 0% to 50%. 
The minimum recombination fraction is 0, indicating perfect linkage (no recombinants). The 
maximum is 50%, meaning complete independence of the two loci (they are actually located on 
different chromosomes or on the same chromosome with great distance between them).

Multiplex X-STR assays have also been developed. Commonly used X-STR loci can be grouped 
into linkage groups. Each linkage group is presumably transmitted independently from one another. 
These loosely linked loci can be treated as if they were located on different chromosomes. The dis-
tribution of alleles at these X-STR loci should be in accordance with the Hardy–Weinberg principle 
(Chapter 25). Within each linkage group, the occurrence of recombination is negligible. Thus, loci 
within groups are generally considered as closely linked and are thus treated as a haplotype.

21.3 Sex Typing for Gender Identification
Sex typing of a biological sample is useful in forensic investigation. For example, the applica-
tion of sex typing facilitates the identification of the victim and the offender’s DNA evidence in 
sexual assault cases and the remains of victims in mass disasters or missing persons investiga-
tions. One commonly used sex-typing marker is the amelogenin (AMEL) locus. The use of mul-
tiplex PCR systems with an additional amelogenin marker, a non-STR marker, leads to potential 
gender determination.

21.3.1 Amelogenin Locus
This region encodes extracellular matrix proteins involved in tooth enamel formation 
(Table 21.3). Mutations in the AMEL gene can lead to an enamel defect known as amelogen-
esis imperfecta. Amelogenesis imperfecta is a disorder that causes abnormal formation of 
tooth enamel in both primary and permanent teeth. The formed tooth enamel is soft and thin; 
therefore it is easily damaged. The AMEL locus has two homologous genes: AMELX (Xp22.2) 
is located on the human X chromosome (Figure 21.10) and AMELY (Yp11.2) is located on the 
human Y chromosome (Figure 21.11). Although the genes constitute a homologous pair, they 
differ in size and sequence. The coding sequence of the AMELX gene has a size of 2872 bp and 
the AMELY gene has a size of 3272 bp in length.

The most commonly used sex-typing method at the AMEL locus is the detection of a 6 bp 
deletion at intron 3 of AMELX (Figures 21.12 and 21.13). This deletion is not present in AMELY. 
Sex typing can be performed using primers specifically amplifying the region of the AMEL locus. 
Primer sets were developed to amplify both alleles in a single PCR. The two most commonly 

Table 21.3 Sex-Typing Makers and Homologous Genes on the Human X and Y 
Chromosomes

Sex-Typing Markers

X Chromosome Y Chromosome

Gene Symbol
Chromosomal 

Location
Distance from 

Xpter (Mb) Gene Symbol
Chromosomal 

Location
Distance from 

Ypter (Mb)

AMELX Xp22.2 11.3 AMELY Yp11.2 6.7

DXYS156 Xq21.31 88.9 DXYS156 Yp11.2 3.2

SOX3 Xq27.1 139.6 SRY Yp11.31 2.7

STS Xp22.31 7.1–7.3 STSP1 Yq11.221 17.7

TSPYL2 Xp11.2 53.1 TSPY1 Yp11.2 9.2–9.3

Source: Ensembl Homo sapiens version 75.37 (GRCh37). Mb, megabase.
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p22.3
p22.2
p22.1
p21.3
p21.2
p21.1
p11.4
p11.3

p11.23
p11.22
p11.21 TSPYL2
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STS

DXYS156

SOX3

p11.1
q11.1
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q21.3
q22.1
q22.2
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q23
q24
q25
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q27
q28

Figure 21.10 Cytogenetic map of the human X chromosome and sex-typing loci shown with physi-
cal positions (Mb = megabases). Cytogenetic patterns with alternating dark and light bands are 
shown. (© Richard C. Li.)

p11.32 SRY

DXYS156
AMELY
TSPYL1

STSP1

p11.31

p11.2
p11.1
q11.1

q11.21
q11.221
q11.222
q11.223

q11.23

q12

Figure 21.11 Cytogenetic map of the human Y chromosome and sex-typing loci shown with physi-
cal positions (Mb = megabases). Cytogenetic patterns with alternating dark and light bands are 
shown. (© Richard C. Li.)

Exon

1 2 3 4 5 6 7
654321

Intron

Figure 21.12 Structure of human AMELY gene. Exons 1 through 7 and introns 1 through 6 are 
numbered. (© Richard C. Li.)
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used amelogenin primer sets generate amplicons of 106 and 112  bp or 212 and 218  bp for 
AMELX and AMELY loci, respectively. The amplicons generated from AMELX and AMELY are 
separated by electrophoresis. The observation of the AMELX fragment alone indicates a female, 
whereas the observation of both AMELX and AMELY fragments indicates a male (Figure 20.8). 
Nevertheless, DNA from primates and some rudiments can be amplified as well, but the ampli-
con sizes vary. The AMEL locus has been coamplified with other markers to provide a combined 
sex and identity test. Such combined tests have been used in historical D1S80 AFLP profiling 
(Chapter 19) and various current STR multiplex analyses.

Cases of AMELY null mutations have been reported where only the AMELX fragment 
is detected in AMELY null males. Many of them are phenotypically normal but present the 
AMELX sex types of females. Various interstitial deletions at the Y chromosome short arm and 
point mutations within the primer-binding sites have been identified as the possible cause of 
some AMELY null sex typing. The frequency of AMELY null males is rare, but is higher in Sri 
Lanka and India. However, the mutations may lead to incorrect identification of sex if the muta-
tions occurred in the DNA evidence of criminal investigations such as sexual assaults or in the 
identification of human remains in mass disasters. In the case of a female individual, an AMELX 
mutation, which is rare, usually affects one copy of AMELX; however, the wild-type copy of the 
AMELX is detected. Thus, the AMELX mutation is less problematic in females than the AMELY 
mutation in sex typing in males.

21.3.2 Other Loci
To solve the incorrect identification problem with null AMEL mutations, additional candidate 
genetic markers are used in combination with AMEL analysis (Table 21.3). One useful marker 
is the sex-determining region Y (SRY) gene located on the Yp11.31 of the Y chromosome. SRY 
encodes a transcription factor that plays a role in the regulation of sex determination toward 
male development. The SRY protein contains a DNA-binding domain known as the HMG box. 
SOX3, an SRY-related HMG box-containing gene, has been identified at Xq27.1 of the X chromo-
some, which shares sequence homology with SRY. SRY-specific amplification is achieved using 
SRY-specific primers.

Another marker is the TSPY locus located on Yp11.2 of the Y chromosome. The TSPY locus 
encodes the testis-specific protein Y-encoded gene that is only expressed in the testis and may 
play a role in spermatogenesis. The TSPY structural gene is approximately 20 kb in length, con-
sisting of 6 exons and 5 introns. The TSPY gene has multiple copies. A single Y chromosome 
contains several dozen copies of TSPY genes that are organized as a tandem array. The TSPY 
gene cluster shows copy number variation (CNV) between individuals in a population ranging 
from 23 to 64 copies. DYS14 is a marker utilized for the characterization of the TSPY locus. The 

6 bp deletion

Exon Intron

AMELX

AMELY

4

4

33

3 3

Figure 21.13 Sex typing using AMEL markers. A 6-bp deletion in intron 3 is present in AMELX but 
not in AMELY and can be resolved using electrophoresis as described in the text. (© Richard C. Li.)
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DYS14 locus includes the partial sequence of the first exon and intron of the TSPY gene and 
shares approximately 98% sequence homology with other members of the TSPY gene cluster.

A TSPY-like (TSPYL) gene has been identified on the short arm of the X chromosome and is 
designated as TSPYL2. TSPYL2 is a single-copy gene per X chromosome and is 6.3 kb in length, 
consisting of 7 exons and 6 introns. TSPYL2 shares homology with TSPY. Additionally, several 
TSPYL genes have been identified on the autosomes. Primers are designed to amplify TSPY only 
and not amplify TSPYL2 and other TSPYL gene sequences. The sensitivity of detecting TSPY, 
due to multiple copies, can be considerably higher than any single copy genetic maker such as 
SRY.

Furthermore, the DXYS156 locus, located at the pseudoautosomal region of both X and 
Y chromosomes, is another candidate marker used for sex typing. DXYS156 is a polymor-
phic pentanucleotide STR. The DXYS156 Y alleles have an additional adenine insertion in the 
repeat units of STR. Thus, the DXYS156 Y alleles can be distinguished from the DXYS156 X 
alleles because of the insertion. Additionally, the DXYS156 alleles are ethnically distributed. 
The DXYS156 profiling may potentially indicate the ethnic origin of an individual as an inves-
tigative lead.

Moreover, the steroid sulfatase (STS) gene encodes an enzyme that catalyzes the conversion of 
sulfated steroid precursors to biologically active steroids such as estrogens and androgens. The 
STS gene is located on the distal part of the short arm of the X chromosome within Xp22.31. The 
STS gene is 146 kb in length, consisting of 10 exons and 9 introns. The size of exons is between 
120 and 160 bp long. However, the sizes of introns vary greatly, ranging from 102 bp to 35 kb. 
The entire coding sequence of the STS gene is 1542 bp in length. Deletions and point mutations 
of the STS gene have been associated with X-linked ichthyosis, a skin disease that affects males. 
There is an STS pseudogene, 100 kb in length, on the long arm of the Y chromosome known as 
STSP1. Although STSP1 shares some sequence homologies with the STS gene, the pseudogene 
does not encode a functional gene. Primer sets are designed to amplify the target sequences 
within the first intron (35 kb in length) of the STS gene and its homologous STSP1 pseudogene 
sequence. Although the homology of these target sequences of the STS gene and STSP1 pseudo-
gene is approximately 80%, amplicons with two different sizes are produced to identify STS and 
STSP1 alleles for sex typing.
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22
Single Nucleotide 

Polymorphism Profiling

22.1 Basic Characteristics of SNPs
Human genomes contain sequence polymorphisms, which are the variations in nucleotide 
sequences among individuals. One type of sequence polymorphism is called single-nucleotide 
polymorphism (SNP). An SNP constitutes a single-base-pair change originating from a sponta-
neous mutation that can be a base substitution, insertion, or deletion at a single site. An esti-
mated 10 million SNPs may exist in the human genome, and among them, over a million SNPs 
have been identified. Thus, SNPs are the most frequent form of DNA polymorphism observed in 
humans. Most SNPs appear in noncoding regions and some SNPs are found in coding regions 
of genes (Figure 22.1).

The vast majority of SNPs are biallelic, although very rare triallelic and tetraallelic SNPs 
also exist. If an SNP originating from a spontaneous mutation occurs in the germ line, it can be 
inherited by offspring and can spread in the human population. As a result, both the wild type 
(the typical form of an allele occurring in nature) and a mutant allele are produced. This type of 
SNP is referred to as a biallelic SNP. Subsequently, a third mutation, a very rare event, may occur 
at the same nucleotide site. This SNP has a wild type and two different mutant alleles, which 
results in a triallelic SNP. It is also possible that a triallelic SNP is created by introducing two of 
the mutations simultaneously at a single site, which is also a very rare event.

Generally speaking, there are a number of advantages to utilizing SNP loci as markers for 
forensic applications. First, SNPs are abundant within the human genome; therefore, a suffi-
cient number of SNP loci that are suitable for human identification can be selected. Second, in 
SNP analysis, amplified fragments (amplicons) are usually 50–100 base pairs in length and are 
smaller than that in short tandem repeat (STR) analysis (Chapter 20). Therefore, SNP profiling 
can be more useful than STR for analyzing degraded DNA samples in which genomic DNA is 
fragmented (Section 20.5.1). Third, SNP loci have lower mutation rates than STRs and are, there-
fore, useful for specialized human identification such as paternity testing. Lastly, it is possible to 
achieve high-throughput SNP analysis by utilizing multiplex SNP assays, which are amendable 
for automation.

The application of SNPs for forensic DNA analysis also has some disadvantages, in that SNP 
loci are not as polymorphic as STR loci. It is estimated that the analysis of 50–60 SNP loci is 
needed to achieve a similar level of population match probability (Pm—the lower the Pm, the 
less likely a match occurs between two randomly chosen individuals; see Chapter 25) using 13 
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STR loci in CODIS. Moreover, most SNPs are biallelic; therefore, it is difficult to resolve mixed 
DNA profiles when a shared common allele exists in a mixture of more than one individual. 
Furthermore, most DNA databases contain STR profiles instead of SNP profiles, which means 
that it is not possible to carry out a database search for a matching SNP profile in cases where no 
suspect has yet been identified.

22.2 Forensic Applications of SNP Profiling
22.2.1 HLA-DQA1 Locus
The first use of SNP-based profiling for forensic application involved sequence polymorphisms at 
the HLA-DQA1 locus (formerly called the DQα locus). The HLA-DQA1 gene is a member of the 
human leukocyte antigen (HLA) family, which contains a large number of genes involved in the 
immune response in humans. The HLA-DQA1 locus is located within human HLA gene clusters 
on chromosome 6. The region tested for forensic use is highly polymorphic and is located at the 
second exon of the gene (Table 22.1).

22.2.1.1 DQα AmpliType and Polymarker Assays
The SNP profiling of the HLA-DQA1 locus was carried out using the DQα AmpliType® kit. It 
was the first commercial kit, developed in the late 1980s by Cetus Corporation in Emeryville, 
CA. The HLA-DQA1 panel can distinguish the following: alleles 1 (subtyped as 1.1, 1.2, or 1.3), 
2, 3, and 4 (subtyped as 4.1 and 4.2/4.3, in which the 4.2 and 4.3 alleles are combined and cannot 
be distinguished). Therefore, a total of 28 possible genotypes from combinations of these alleles 
can be distinguished. Although the Pm of this SNP profiling is high (approximately 5 × 10−2), it 
is useful as a preliminary test to quickly exclude suspects.

In addition to the HLA-DQA1 locus, five additional loci—LDLR, GYPA, HBGG, D7S8, and 
GC—were utilized for forensic application in 1993 (Table 22.1). These loci were included in the 
second generation of the kit known as the AmpliType® PM PCR amplification and typing kit 
(also known as Polymarker), manufactured by Perkin-Elmer (Norwalk, CT). It consisted of one 
panel for the testing of HLA-DQAl and another panel for an additional five loci (Figure 22.2). 
Among these five additional loci, LDLR, GYPA, and D7S8 each have two alleles (designated 
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Figure 22.1 SNPs fall into several classes. Most reside in the noncoding regions of DNA and are 
designated as noncoding SNPs (ncSNPs). A subset of ncSNPs can also be found in introns. SNPs 
residing in exons are further divided into two types: The synonymous type (synSNP) is an exonic 
SNP that does not change the amino acid composition of the encoded polypeptide. Conversely, a 
nonsynonymous type (nsSNP) changes the encoded amino acid. SNPs in the promoter regions of 
the genome are known as promoter SNPs (pSNPs). Arrow: transcription start site. (© Richard C. Li.)
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A and B), while HBGG and GC each have three alleles (A, B, and C). As a result, the Pm of the 
Polymarker panels decreased to 10−4.

The DNA profiles of the Polymarker system have been accepted in US courts. The Polymarker 
system has a number of advantages, particularly compared to variable number tandem repeat 
analysis (VNTR; see Chapter 19). First, the Polymarker system is a PCR-based method and is 
capable of analyzing a small amount of DNA sample (approximately 2 ng per analysis). Therefore, 
it is more sensitive than the method used in VNTR analysis. Second, the Polymarker system is an 
SNP assay with short amplicon sizes and, therefore, can analyze degraded DNA samples, which 
is not possible in VNTR analysis. Third, the Polymarker system is more rapid and less laborious 
than VNTR analysis. Lastly, the amplicon sizes of alleles at a given locus have identical lengths 
and, therefore, this assay does not exhibit preferential amplification as in amplified fragment 
length polymorphism (Chapter 19). However, the Polymarker system has its limitations com-
pared to VNTR analysis. For example, compared to the VNTR analysis, the Pm of the Polymarker 
system is high, resulting in poor discrimination power in the comparison of two DNA profiles. 
Therefore, the Polymarker system is merely useful for excluding a suspect. Moreover, the SNP 
loci utilized in the Polymarker system are less polymorphic than VNTR loci. The limited number 
of alleles per SNP locus makes identifying the components of mixtures more difficult than with 
VNTR analysis in situations when contributors of a mixture sample share common alleles. For 
these reasons, the Polymarker system was replaced by STR profiling in the late 1990s.

Table 22.1 Chromosomal Locations of SNP Loci Used in AmpliType® PM PCR 
Amplification and Typing Kit

Locus Gene Product
Chromosome 

Location
Number 

of Alleles Further Reading

HLA-DQA1 HLA-DQA1 6p21.3 7 Gyllensten and Erlich 
(1988)

LDLR Low-density 
lipoprotein 
receptor

19p 13.1-13.3 2 Yamamoto et al. 
(1984)

GYPA Glycophorin A 4q28-31 2 Siebert and Fukuda 
(1987)

HBGG Hemoglobin G 
gammaglobin

11 p 15.5 3 Slightom et al. (1980)

D7S8 Anonymous 7q22-31.1 2 Horn et al. (1990)

GC Group-specific 
component

4q11-13 3 Yang et al. (1985)

1 2 3 4 C 1.1 1.3 1.3 4.1 4.2
4.3 DQA11.3

All

4

1.2 but

S A AB B A B A BC A B C
LDLR GYPA HBGG D7S8 GC

Figure 22.2 Panels of immobilized probes in the Polymarker kit. Top: HLA-DQA1. Bottom: additional 
five loci (LDLR, GYPA, HBGG, D7S8, and GC). C and S represent threshold control dots. (© Richard C. Li.)
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22.2.1.2 Allele-Specific Oligonucleotide Hybridization
Both DQα AmpliType® and Polymarker kits utilize the allele-specific oligonucleotide (ASO) 
hybridization technique. This technique analyzes single-nucleotide variations, such as SNPs, at a 
given locus. It is based on the principle that ASO probes, usually 14–17 bases in length, hybridize 
to their complementary DNA sequences to distinguish known polymorphic alleles. ASO probes 
for multiple alleles at several loci can be arranged on the same panel to establish the presence or 
absence of specific alleles in PCR-amplified fragments of a DNA sample (Figure 22.3). Thus, the 
genotypes can be determined.

In the DQα AmpliType® and Polymarker kits, the oligonucleotides representing different 
alleles are immobilized to a solid matrix consisting of nylon membrane strips. Each immobi-
lized probe at a particular site on the membrane is utilized to detect corresponding SNPs. Since 
the probe rather than the target DNA (as with regular blot format; see Chapter 9) is immobilized 
to the solid phase, the configuration used here is known as a reverse blot format.

The regions of the DNA in question are amplified by PCR. One of each pair of the primers 
is conjugated with biotin at the 5′ end (Figure 22.4). Thus, the amplicons are biotinylated for 
purposes of detection. This kit established multiplexing of a six-locus system, allowing simulta-
neous amplification of the HLA-DQA1 locus along with LDLR, GYPA, HBGG, D7S8, and GC in 

Biotin Primer

DNA polymerase

Biotinylated PCR product

Figure 22.4 Amplification of DNA using biotinylated primers. The biotin is conjugated at the 5′ 
end of the primer. The amplified products are biotinylated. (© Richard C. Li.)

Biotinylated PCR product

Probe A Probe B

Figure 22.3 Hybridization with ASO. Two probes are incubated with the target DNA containing the 
SNP. Only the perfectly matched probe–target DNA can hybridize under optimal conditions.
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a single reaction for each sample. Following the denaturation of the PCR product to separate the 
two complementary DNA strands of the amplicons, the biotinylated strands are hybridized to 
the immobilized probes. Hybridization and washing conditions are established to ensure proper 
hybridization of the ASO probe and its target sequence. Unbound amplicons are washed away.

The presence of a PCR product bound to a specific probe can be detected by a colorimetric 
detection system (Figure 22.5). Since the amplicons are biotinylated, a horseradish peroxidase–
conjugated streptavidin complex is utilized to bind to the biotinylated amplicons. The horse-
radish peroxidase then catalyzes the oxidation reaction of the colorless substrate, tetramethyl 
benzidine (TMB), into a blue precipitate at a designated location on the membrane strip, allow-
ing the genotype of the sample to be determined (Figures 22.6 and 22.7).

The kit uses a threshold control (C dot in the HLA-DQA1 panel and S dot in the panel of the 
other five loci) to distinguish between signal and background noise and to determine whether a 
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Figure  22.5 Reverse blot assay. (a) The probe is immobilized onto a solid-phase membrane 
and hybridized with a biotinylated PCR product having the target sequence. (b) The detection of 
hybridization is carried out by streptavidin (SA) and horseradish peroxidase (HRP) conjugate. (c) 
Colorimetric reaction is catalyzed by HRP using TMB as a substrate. (© Richard C. Li.)
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sufficient amount of DNA has been amplified to detect all the alleles present in a sample. If the 
signal intensities of allele dots are greater than or equal to the threshold control, the alleles are 
considered true. If the allele dots are less intense than the threshold control, they are consid-
ered inconclusive for the determination of full genotypes because an allele may not have been 
detected due to a low level of DNA template.
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Figure 22.7 DNA typing of heterozygous alleles at the HLA-DQA1 locus using the reverse blot assay 
(Polymarker kit). The representative genotypes of the samples are noted on the right. (© Richard C. Li.)
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Figure 22.6 DNA typing of homozygous alleles at the HLA-DQA1 locus using the reverse blot assay 
(Polymarker kit). The genotype of each sample is noted on the right. (© Richard C. Li.)
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22.2.2 Current and Potential Applications of SNP Analysis
22.2.2.1 Application of SNP Analysis for Forensic Identification
The applications of SNP analysis for forensic human identification are summarized in 
Table 22.2. Autosomal SNP panels can be used for the most common types of forensic test-
ing, including analysis of degraded DNA samples. The SNP panels for mitochondrial DNA 
(mtDNA) profiling are useful for identifying human remains by comparing the DNA pro-
files in question to those of potential relatives. This approach may serve as an alternative 
method to the DNA sequencing method of mtDNA analysis, which is time-consuming and 
laborious. SNP loci on the Y chromosome are also potentially useful markers for paternity 
testing because of low mutation rates. SNP loci such as ancestry informative markers (AIM) 
can be used to determine the ethnic origins of questioned samples to generate leads for 
investigations.

Table 22.2 Examples of Forensic Applications of SNP Profiling

Testing Candidate SNP Loci Application Further Reading

Identity Autosomal SNPs Human identification Kidd et al. (2006); 
Sanchez et al. 
(2006)

Human identification 
via degraded DNA

Budowle (2004)

mtDNA SNPs Human identification Grignani et al. 
(2006)

Y chromosome SNPs Paternity testing Hammer et al. 
(2006)

Biogeographical 
origin

Ancestry informative 
markers (AIMs)

Ethnic group 
identification

Frudakis et al. 
(2003); Shriver and 
Kittles (2004)

Physical 
characteristics

MC1R (melanocortin 
1 receptor gene)

Hair color 
identification 
(investigative lead)

Grimes et al. (2001)

P (gene has role in 
pigmentation)

Eye color 
identification 
(investigative lead)

Rebbeck et al. 
(2002)

Pathology KCNH2 (cardiac 
potassium channel 
gene)

Determining cause of 
sudden death from 
cardiac arrhythmia 
long QT syndrome

Lunetta et al. (2002)

SCN5A (encodes 
cardiac sodium 
channel gene)

Determining cause of 
sudden death from 
cardiac arrhythmia 
long QT syndrome

Burke et al. (2005)

Toxicology CYP2C19, CYP2D6, 
CYP3A4, CYP2E1 
(drug metabolizing 
enzyme genes)

Investigation of drug 
overdose (including 
death)

Kupiec et al. (2006)
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22.2.2.2 Potential Applications of SNPs for Phenotyping
One potential application of SNP analysis is in determining phenotypic information, also known 
as phenotyping (Table 22.2). The relevant SNP loci are usually nonsynonymous SNPs (nsSNPs); 
they reside in the exon and change the encoded amino acid, which leads to an altered pheno-
type. Phenotyping of a questioned sample can reveal physical characteristics of an individual, 
such as hair and eye color, to provide leads for investigations. A number of SNPs residing within 
the melanocortin 1 receptor gene (MC1R) are associated with red hair, fair skin, and freckles, 
while SNPs residing within the P gene, which play a role in pigmentation, are associated with 
eye color variations.

Phenotyping can also be employed in the area of forensic pathology. Cardiac arrhythmia long 
QT syndrome (LQTS) can cause sudden death. A number of LQTS-associated SNPs—for exam-
ple, SNPs in KCNH2 and SCN5A genes—have been shown to correlate to such deaths. Thus, 
these SNPs are potentially useful for investigating the causes of death. Finally, phenotyping also 
has applications in forensic toxicology. A number of SNPs in genes, such as CYP2D6, that are 
responsible for metabolizing drugs can serve as potential markers for postmortem investiga-
tions of drug-overdose cases.

22.3 SNP Techniques
Over the years, various techniques of SNP analysis have been developed and can be divided 
into several groups based on the mechanisms used: allele-specific hybridization, primer exten-
sion, oligonucleotide ligation, and invasive cleavage. In allele-specific hybridization, allele dis-
crimination is based on an optimal condition allowing only the perfectly matched probe–target 
hybridization to form. Primer extension methods are based on the ability of DNA polymerase to 
incorporate specific deoxynucleotides (dNTPs) complementary to the sequence of the template 
DNA. Allele-specific oligonucleotide ligation is based on the condition that only the allelic probe 
perfectly matched to the target is ligated. In the invasive cleavage method, allelic discrimination 
is based on DNA sequence-specific cleavage by endonucleases. A number of detection methods 
can be utilized in SNP analysis, such as the measurements of fluorescence, luminescence, and 
molecular mass. Most assays are carried out in solutions or on solid matrices such as glass slides, 
chips, or beads. Table 22.3 summarizes the representative assays for SNP typing.

For decades, Sanger sequencing, using chain-termination chemistry, has been the standard 
method for DNA sequencing (Chapter 23). In recent years, next-generation sequencing (NGS), 
a rapidly developing technology, has had a profound impact on biology. Compared to Sanger 
sequencing, NGS is advantageous in that it can achieve substantially higher throughput, and at 
lower cost, than the Sanger method. For example, a human genome can now be sequenced in 
several days using NGS technologies. Although NGS is not yet widely utilized for forensic appli-
cations, it has great potential for forensic DNA analysis, particularly in SNP analysis.

22.3.1 Next-Generation Sequencing Technologies
NGS technologies have two categories of application: de novo sequencing and resequencing. In 
de novo genome sequencing, uncharacterized genomes or characterized genomes with substan-
tial structural variations are sequenced. Sequence reads are assembled without any reference 
sequence. In resequencing applications, characterized genomes are sequenced. Sequence reads 
are assembled against an existing reference sequence to identify sequence polymorphisms. Thus, 
resequencing can potentially be used for forensic applications to detect polymorphisms associ-
ated with human identification. Target resequencing is a useful method of resequencing that can 
be utilized for forensic applications. Prior to sequencing, the genomic regions of interest from 
a DNA sample are selectively isolated through a method known as enrichment. Several target-
enrichment strategies have been developed. PCR is the most widely used enrichment method. 
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The PCR-based approach is highly effective in targeting genomic regions that are small in size. 
Nevertheless, a typical NGS involves several major steps, including sample, library, and template 
DNA preparation; template amplification; sequencing and detection; and base calling; as well as 
data analysis (Figure 22.8).

22.3.2 DNA Samples, Sequencing Library, and Template Preparation
For most sequencing applications, micrograms of purified DNA are needed. This require-
ment is still a challenge for forensic casework applications where nanograms of DNA are 
often obtained. Human autosomal genome sequencing usually requires converting a DNA 
sample into a sequencing library. Two types of sequencing libraries are usually used: mate-
pair libraries and fragment libraries. A mate-pair library is often used in de novo sequenc-
ing applications, while the fragment libraries can be used for resequencing and forensic 
applications. To construct a fragment library, a DNA sample is fragmented using mechani-
cal methods such as sonication, nebulization, or shearing; endonuclease digestion; or a 
transposon-based method. Subsequently, sequencing adapters containing primer-binding 
sites for universal PCR primers are ligated to both ends of the DNA fragments. In rese-
quencing applications, multiplex sequencing of pooled samples is often carried out, which 
can improve the efficiency and reduce the costs of sequencing. For multiplex sequencing, an 
index tag containing a bar code can be ligated to each DNA fragment to allow it to be identi-
fied after sequencing. Indexing can minimize the risk of sample mix-ups and contaminations 
during the sample preparation.

Genomic DNA

Fragmentation and
library preparation

Enrichment for
target resequencing

Distribution on
solid support

Flow cells

Solid-phase PCR

Sequencing

Imaging and
base calling

Sequence analysis

Beads

Emulsion PCR

Figure 22.8 NGS work flow for potential forensic applications. (© Richard C. Li.)
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Most imaging systems of sequencing platforms are not equipped to detect single-molecule 
fluorescence. Thus, DNA templates are amplified using either emulsion or solid-phase PCR. In 
the emulsion PCR, single-stranded DNA templates are bound to beads. DNA-bound beads are 
suspended in a water-in-oil emulsion, where each bead is placed in a single aqueous droplet. 
DNA fragments are amplified using PCR. As a result, each bead is coated with thousands of 
copies of the same template sequence. Subsequently, beads carrying amplified DNA are depos-
ited on a glass slide or into individual fiber-optic wells for sequencing. In solid-phase PCR, both 
forward and reverse primers are attached to a slide (Figure 22.9). DNA templates are hybridized 
to immobilized PCR primers. The extended primer bends and hybridizes to a second immobi-
lized primer, forming a bridge. During the “bridge amplification,” the single-stranded template 
is amplified to form clusters. Solid-phase amplification can produce millions of spatially sepa-
rated template clusters with free ends, allowing universal sequencing primers to hybridize for 
sequencing.

22.3.3 NGS Chemistry
The amplified template fragments are then sequenced. At present, there are two major catego-
ries of NGS chemistry that are routinely used: sequencing by synthesis and sequencing by liga-
tion. The pyrosequencing technology is one example of NGS using the sequencing-by-synthesis 
chemistry. During the pyrosequencing, each nucleotide substrate is introduced one at a time. 
Only the correct nucleotide corresponding to the template is incorporated, and a pyrophosphate 
is released (Figure 22.10a). Pyrophosphate is then converted to ATP, catalyzed by sulfurylase 
(Figure 22.10b). ATP is then utilized by luciferase to convert luciferin to oxyluciferin, and the 
reaction emits light that is detected by a charge-coupled device camera (Figure 22.10c). This 
technology allows the generation of sequences with long read lengths. Cyclic reversible termina-
tion is another example of NGS using sequencing-by-synthesis chemistry. In this method, chain 
terminators (fluorescent-labeled dideoxynucleotides) are used to extend a primer sequence 
complementary to the template DNA. Each of four nucleotides is labeled with a different fluoro-
phore. After incorporation and fluorescence detection, the terminating and fluorescent moieties 
are cleaved and removed (Figure 22.11). As a result, the next sequencing cycle is carried out. This 
process is repeated until the sequence is completed. This is the most commonly used method 
throughout the field of NGS.

In the sequencing-by-ligation chemistry, probes (eight nucleotides in length) are utilized for 
ligation reactions. Each probe contains five specific nucleotides that are complementary to the 
template and three nucleotides that are universal. Probes containing all possible combinations 
of the first five nucleotides are utilized. Each probe is fluorescently labeled according to the first 
two bases of the probe so that it can be identified. During the first round of sequencing reac-
tion, only the probe that is complementary to the template sequence can hybridize. The probe 
is then ligated to the 3′ end of the primer. After detection, three universal nucleotides, includ-
ing fluorophore, are cleaved. The ligation process is repeated several times using a new set of 
probes each time. The newly made complementary DNA strand is then stripped off. In the next 
round of sequencing, new primers that are one nucleotide shorter than the previous primer are 
utilized, and the ligation reaction is repeated. In this round of sequencing, different nucleotide 
positions are read. This process is repeated for several rounds with different primers, until all 
nucleotides in the template have been sequenced twice. As a result, this sequencing method has 
a low error rate.

22.3.4 NGS Coverage
In NGS, sequencing reads are usually not distributed evenly over the genomic regions of interest. 
As a result, some nucleotides will be covered by fewer or more reads than the average. Therefore, 
multiple reads for each nucleotide are necessary to obtain a reliable sequence. The average num-
ber of times that each nucleotide in the genomic regions of interest is sequenced is known as the 
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Figure 22.9 A photo of an NGS platform. A MiSeq (Illumna) desktop sequencer (top), a flow-cell 
device (middle) where DNA templates are distributed for PCR, and a reagent cartridge (bottom) are 
shown. (© Richard C. Li.)
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utilized by luciferase, converting luciferin to oxyluciferin, which emits light.
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coverage or the sequencing depth. The level of coverage depends on the types of applications. For 
example, for human genome SNP analysis, the level of coverage is from 10 to 30. The coverage 
can be calculated using the following equation:

 
C

LN

G
=

 
where:

 C = coverage
 G = haploid genome length
 L = read length
 N = number of reads
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Currently, NGS has not been widely used in forensic applications. One disadvantage of NGS 
is that the error rate of NGS is higher than that of Sanger sequencing. Although the error rate 
of NGS is not yet acceptable for forensic casework analysis, it can potentially be overcome by 
increasing the sequencing coverage.
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23
Mitochondrial DNA Profiling

Forensic mitochondrial DNA (mtDNA) analysis is an important tool for human identification 
and is especially useful for identifying victims such as missing persons and individuals in mass 
fatality cases. Because mtDNA is maternally inherited, the mtDNA profiles of these individuals 
can be compared to those of their maternal relatives, and thus these individuals can be identi-
fied. Additionally, cells contain a much higher copy number of the mtDNA genome than that 
of the nuclear genome. Therefore, mtDNA testing is frequently used to analyze evidence sam-
ples, such as hair shafts, that contain low amounts of nuclear DNA. Furthermore, buried bones 
and decomposed tissues, in which nuclear DNA may be degraded, can be tested with mtDNA 
analysis.

23.1 Human Mitochondrial Genome
Mitochondria are cellular organelles that serve as the energy-generating components of cells 
(Figure 23.1). Each cell contains hundreds of mitochondria, which have their own extrachro-
mosomal genomes separated from the nuclear genomes. Although each human mitochondrion 
contains multiple copies of the mtDNA genome, the exact copy number varies for each cell. 
However, it is estimated that hundreds of copies of the mtDNA genome exist in most cells.

23.1.1 Genetic Contents of Mitochondrial Organelle Genomes
The human mitochondrial genome was first sequenced by Fred Sanger’s laboratory at Cambridge 
University and was published in 1981; it is known as the Cambridge reference sequence (CRS). 
The sequence was largely derived from a placental sample from an individual of European 
descent and also partially from HeLa cells (a cell line derived from cervical cancer cells), as well 
as from bovine cells. It was later discovered, by resequencing the original mtDNA sample, that 
the CRS contains substitution errors at 10 nucleotide positions. The revised Cambridge reference 
sequence (rCRS) was published in 1999 and presented corrections to these substitution errors. 
Additionally, CRS contains a cytosine dimer at nucleotide positions 3106 and 3107, which is in 
fact a single cytosine nucleotide. This error is not corrected in the rCRS in order to retain the 
original nucleotide numbering system of CRS and thus to avoid inconsistency with the pre-
vious literature. The human mitochondrial DNA genome is circular with no beginning and 
end, which can make sequence comparison a potential problem. Therefore, the rCRS, with its 
nucleotide numbering system, is used as a reference when aligning with other mitochondrial 
sequences for comparison purposes.

Organelle genomes are usually much smaller than their nuclear counterparts. The human 
mtDNA genome consists of 16,569 base pairs (bp) containing 37 genes (Figure 23.2). Thirteen of 
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these genes code for proteins involved in the respiratory complex, a main energy-generating com-
ponent in mitochondria. The other 24 specify noncoding RNA molecules required for the expres-
sion of the mitochondrial genome. The genes in the human mitochondrial genome are much 
more closely packed than in the nuclear genome and contain no introns. A control region, also 
known as a displacement loop (D loop), contains the origin of replication for one of the mtDNA 
strands but does not code for any gene products (Figure 23.2). An asymmetric distribution of 
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Figure 23.1 Mitochondrion. mtDNA, mitochondrial DNA. (© Richard C. Li.)
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Figure 23.2 Human circular mitochondrial genome. The transcription direction for the H (heavy) 
and L (light) strands are indicated by arrows (PH, PL, respectively). The origins of replication are 
labeled OH for the heavy strand and OL for the light strand. The mitochondrial DNA genome encodes 
genes. ND, NADH coenzyme Q oxidoreductase complex; CO, cytochrome c oxidase complex; CYTB, 
cytochrome b; ATP, ATP synthase; rRNA, ribosomal RNA. Transfer RNA genes are shown as indi-
cated. (© Richard C. Li.)
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nucleotides gives rise to light (L) and heavy (H) strands. The H strand contains a greater number 
of guanine nucleotides and a higher molecular weight in comparison to the L strand.

23.1.2 Maternal Inheritance of mtDNA
Maternal inheritance is typically observed for the mtDNA genome (Figure 23.3), which is inher-
ited differently from nuclear genes. The inheritance of the mtDNA genome does not obey the 
rules of Mendelian inheritance and is thus called non-Mendelian inheritance.

The mitochondria of a spermatozoon are located in the midpiece (Chapter 14). At conception, 
only the head portion of a spermatozoon (containing a nucleus but no mitochondria) enters the 
egg. The fertilized egg contains the maternal mitochondria, which are transmitted to the prog-
eny. Occasionally, the paternal mitochondria can enter the cell. However, paternal mitochondria 
in the spermatozoon that enter the egg are usually destroyed by the egg cell after fertilization 
(Figure 23.4). Therefore, the coinheritance of maternal and paternal mtDNA in a single indi-
vidual is extremely rare in humans. The mtDNA sequence is identical for relatives within the 
same maternal lineage, a property that is useful when identifying individuals by comparing 
their mtDNA with that of maternal relatives.

Homologous DNA recombination (Chapter 25) has not been observed in the mtDNA genome. 
Thus, an mtDNA profile, also referred to as the mitotype, is considered a haplotype treated as a 
single locus. The mitochondrial genome has a higher mutation rate (up to 10 times higher) than 
its nuclear counterpart. The presence of mutations can be problematic in victim identification 
when comparing the mtDNA profiles of a victim with the relatives of the victim.

23.2 mtDNA Polymorphic Regions
23.2.1 Hypervariable Regions
The most polymorphic region of mtDNA is located within the D-loop (Figure 23.5). The three 
hypervariable regions in the D-loop are designated hypervariable region I (HV1: 16,024–16,365; 
342  bp), hypervariable region II (HV2: 73–340; 268  bp), and hypervariable region III (HV3: 
438–574; 137 bp). The most common polymorphic regions of the human mtDNA genome ana-
lyzed for forensic purposes are HV1 and HV2.

23.2.2 Heteroplasmy
Heteroplasmy occurs when an individual carries more than one mtDNA haplotype. Heteroplasmy 
may be observed with one kind of tissue and may be absent in other kinds of tissues; for example, 

Figure 23.3 Pedigree of a human family showing inheritance of mtDNA. Females and males are 
denoted by circles and squares, respectively. Red symbols indicate individuals who inherited the 
same mtDNA.
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mtDNA heteroplasmy is commonly observed in hair samples (Chapter 4). Additionally, an indi-
vidual may exhibit one mitotype in one tissue and a different mitotype in another. Thus, it 
is necessary to obtain and process additional samples to confirm the heteroplasmy when it is 
observed in a questioned sample but not in a known sample or vice versa. The two types of het-
eroplasmies are sequence and length heteroplasmy.

Sequence heteroplasmy is defined as the presence of two different nucleotides at a single posi-
tion shown as overlapping peaks in a sequence electropherogram (Figure 23.6). Heteroplasmy 
usually occurs at one position, but on rare occasions it can be observed at more than one 
position. Hot spots for heteroplasmy have been documented at both HV1 and HV2 regions. 
Heteroplasmy may complicate the interpretation of mtDNA results, but its presence can also 
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Figure 23.5 Hypervariable regions of the D-loop in mtDNA (with nucleotide positions). (© Richard C. Li.)
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Figure 23.4 A model of uniparental mtDNA inheritance in humans. Paternal mitochondria occa-
sionally enter the egg cell. Paternal mitochondria inside fertilized eggs are tagged by ubiquitin 
protein (Ub). It is proposed that the ubiquitination of sperm mitochondria leads to the degradation 
of paternal mitochondria in fertilized eggs. Tagged Ub can be recognized by proteasomes and lyso-
somes, which are cellular degradation machineries. A polyubiquitin chain with at least four ubiquitin 
units is needed to be recognized by the proteasomes. Ubiquitin with less than four ubiquitin units 
can be processed by the lysosomes. (© Richard C. Li.)
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improve the strength of a match. Both HV1 and HV2 of the human mtDNA D-loop region 
contain homopolymeric cytosine sequences known as C stretches. The HVI region contains a 
C stretch between nucleotide positions 16,184 and 16,193, interrupted by a thymine at position 
16,189. If a base transition from T to C occurs at position 16,189 (a variant present in approxi-
mately 20% of the population), it results in an uninterrupted C stretch. A similar C stretch 
resides between positions 303 and 315 of the HV2 region.

Length heteroplasmies are often observed at the uninterrupted C stretches in sequencing, in 
which sequencing products with various lengths of polymeric cytosine residues are present. As a 
result, sequences downstream from the C stretch cannot be resolved (Figure 23.7). It is not clear 
whether the length heteroplasmy is due to replication slippage at the C stretches or results from 
the presence of a mixture of length variants in the cells. If length heteroplasmy occurs, alterna-
tive sequencing primers that anneal at the downstream of C stretches can be used to obtain the 
downstream sequences of the C stretches.

23.3 Forensic mtDNA Testing
23.3.1 General Considerations
mtDNA analysis is often used on samples derived from skeletal or decomposed remains. The 
surface of the sample should be cleaned to remove any adhering debris or contaminants. Bones 
and teeth are pulverized to facilitate extraction of the mtDNA (Chapter 5). Duplicate extractions 
(e.g., two sections of a single hair) are recommended if sufficient sample material is available. 

G G G NT T T TA A A A A A A AC C

Figure 23.6 Electropherogram showing mtDNA sequence heteroplasmy at position 234R (A/G) as 
indicated by an arrow. N, unresolved sequence. (© Richard C. Li.)
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Figure 23.7 Length heteroplasmy. Electropherogram showing mtDNA length heteroplasmy at the 
C stretch of the HV1 region where position 16,189 is a T (top) and a C (bottom) as indicated by an 
arrow. N, unresolved sequence. (© Richard C. Li.)
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mtDNA is extracted using a similar method to nuclear DNA (nuclear DNA is coextracted with 
mtDNA). The amount of mtDNA can therefore be estimated from the quantity of nuclear DNA 
obtained. Alternatively, mtDNA-specific quantization methods using real-time PCR (Chapter 6) 
can also be used to directly obtain measurements of mtDNA extracted.

For mtDNA sequencing, the analysis of both strands of the mtDNA in a given region must be 
performed to ensure accuracy. Due to the high sensitivity of mtDNA analysis, it is essential to 
minimize risks of contamination during the procedure. Contamination must be strictly moni-
tored using proper controls such as extraction reagent blanks (Section 7.5.3) and amplification 
negative controls (samples containing all reagents except DNA template).

Finally, a positive control must also be used to monitor the success of the analysis. It should 
be introduced at the amplification step and remain through the sequencing process. A positive 
control consists of a DNA template of known sequence, such as DNA purified from the HL60 
cell line.

23.3.2 mtDNA Screen Assay
One example of the assay for screening mtDNA variations is the allele-specific oligonucleotide 
(ASO) assay. It allows initial screening of mtDNA sequence polymorphisms and has the poten-
tial to reduce the number of samples required for mtDNA sequencing. This method is also 
useful for excluding or eliminating suspects from a case. However, HV1 and HV2 sequencing 
should be performed to obtain complete sequence information for the targeted HV regions to 
confirm a match.

The commercial Linear Array™ mtDNA HV1/HV2 region sequence typing kit (Roche 
Applied Sciences, Indianapolis) utilizes reverse ASO configuration with a panel of immobi-
lized ASO probes that detect common polymorphic sites (Figures 23.8 and 23.9). The mtDNA is 
amplified at both HV1 (444 bp amplicon) and HV2 (415 bp amplicon) regions and the forward 
primers are biotin labeled at the 5′ ends of the oligonucleotides. Thus, the amplified PCR prod-
uct (amplicon) is biotinylated. A horseradish peroxidase–conjugated streptavidin complex then 
binds to the biotinylated amplicon (see Chapter  9). Finally, colorimetric detection is carried 
out with tetramethylbenzidine (TMB) as the substrate to produce a colored precipitate at the 
designated location. The typing kit detects sequence variations in 19 positions within the HV1 
and HV2 regions.

TMB
(colorless)

Blue
precipitate

Biotinylated amplicon of
mtDNA HV regions

HRP

SA

Immobilized probe

Membrane

Figure 23.8 Reverse blot assay employed in mtDNA screen. A probe is immobilized onto a solid-phase 
membrane, and then hybridized with a biotinylated amplicon of the mtDNA HV sequences. Hybridization 
is detected by a streptavidin (SA) and horseradish peroxidase (HRP) conjugate. A colorimetric reaction 
is catalyzed by HRP using tetramethylbenzidine (TMB) as a substrate. (© Richard C. Li.)
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23.3.3 mtDNA Sequencing
To sequence a specific region of mtDNA, a combination of PCR amplification and DNA sequenc-
ing techniques is utilized to reduce the time and labor needed to obtain DNA sequences from 
genomic DNA templates. mtDNA sequencing usually consists of (1) PCR amplification, (2) DNA 
sequencing reactions, (3) separation using electrophoresis, and (4) data collection and sequence 
analysis (Figure 23.10). Chapter 25 describes the evaluation of the strength of the results via 
statistical analysis.

23.3.3.1 PCR Amplification
The extracted DNA samples must be amplified to yield sufficient quantities of template for sequenc-
ing reactions. PCR amplification of all or a part of the D-loop region can be carried out with vari-
ous primer sets. If a sample contains intact mtDNA, the HV1 and HV2 regions can be amplified 
as two amplicons, each of about 350–400 bp in length. If an mtDNA sample is fragmented due to 
degradation, the hypervariable regions can be amplified as smaller amplicons. PCR amplification of 
mtDNA is usually done in 34–38 cycles. Protocols for highly degraded DNA specimens sometimes 
require 42 cycles. The use of higher PCR cycle numbers can improve the yield of the amplicons.

Following mtDNA amplification, a purification step is necessary to remove excess primers 
and deoxynucleotide triphosphates (dNTPs). This step can be performed using filtration devices 
such as a Microcon® to remove small molecules from the sample or using nuclease digestion 
with shrimp alkaline phosphatase or exonuclease I to degrade remaining primers and dNTPs. 
The concentration of the amplicons is important for an optimal sequencing reaction in the next 
phase of mtDNA sequencing. The quality and quantity of the mtDNA amplicon must be evalu-
ated to confirm the presence or absence of amplicons and their concentrations. This can be done 

Figure 23.9 Linear array mtDNA assay results (top) and negative control (bottom). (© Richard C. Li.)
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using an agarose yield gel to visualize the amplicons of the sample or via capillary electropho-
resis using a modular microfluidic chip device (Figure 8.12), a more informative method, for 
quantifying amplicons.

23.3.3.2 DNA Sequencing Reactions
The best-known DNA sequencing techniques are the chain-termination method and the chemi-
cal degradation method developed by Sanger and Gilbert (who shared the Nobel Prize for their 
work), respectively, in 1977. Over the years, the chain-termination method has become more 
common because it is suitable for automation and does not require the toxic chemicals necessary 
for the chemical degradation method.

23.3.3.2.1 Chain-Termination or Sanger Method
Using the chain-termination method, an oligonucleotide primer that can anneal to a single-
stranded DNA template is utilized. A sequencing reaction contains DNA polymerase and the four 
dNTPs in order to carry out extension. The reaction also contains small quantities of dideoxynu-
cleotide triphosphates (ddNTPs, Figure 23.11). Thus, a sequencing reaction involves a combination 
of extension and termination of the chain (Figure 23.12). If a ddNTP molecule is incorporated into 
a growing DNA chain, the absence of a 3′ OH group in the ddNTP molecule prevents the forma-
tion of a phosphodiester bond and thus disrupts the extension of the oligonucleotide chain.

The ratio of ddNTPs to dNTPs has been optimized to result in a collection of DNA fragments 
varying in length by one nucleotide from the primer length to the full length of the sequencing 
reaction product. As a result, the products of the sequencing reaction consist of a pool of various 
lengths of oligonucleotide chains terminated by ddNTPs. By using the four different ddNTPs, 
populations of DNA fragments are generated that terminate at positions occupied by every A, C, 
G, or T in the template strand.

The sequencing product of chain termination can be labeled with the dye-terminator system, 
in which the terminator is labeled, or with the dye-primer system, in which the primer is labeled. 

DNA extraction

DNA quantitation

PCR co-amplification of
HV1 and HV2

Detection of
PCR products

Cycle sequencing
(HV1 forward primer)

Electrophoresis Electrophoresis

Sequence analysis
and comparison

Electrophoresis Electrophoresis

Cycle sequencing
(HV1 reverse primer)

Cycle sequencing
(HV2 forward primer)

Cycle sequencing
(HV2 reverse primer)

Figure 23.10 Sanger sequencing work flow for the mtDNA HV regions. (© Richard C. Li.)
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The dye-terminator system is commonly used for mtDNA sequencing in forensic laboratories. 
With the dye-terminator system, the ddNTPs are labeled with four different fluorescent dyes, 
each with a distinct spectrum. Thus, the sequencing with all four ddNTPs can be carried out in 
a single reaction. The labeled products of sequencing reactions are then resolved during electro-
phoresis and the sequencing data can be collected (Section 23.3.3.).

23.3.3.2.2 Cycle Sequencing
The chain-termination reaction is carried out using a cycle sequencing technique commonly used 
in forensic laboratories for mtDNA sequencing. Cycle sequencing, developed in the late 1980s, 
utilizes thermal cycling to generate a single-stranded template for chain-termination sequenc-
ing reactions. The application of thermal cycling in a sequencing reaction greatly increases the 
signal intensity and thus the sensitivity of the sequencing.

The sequencing reactions are carried out with multiple rounds of thermal cycling. Each 
cycle consists of three steps: denaturation of the double-stranded DNA template, annealing of 
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a sequencing primer to its target sequence, and the extension of the annealed primer by DNA 
polymerase. Cycle sequencing utilizes only a single primer per reaction. During the extension of 
cycle sequencing, the extension of the strand is terminated with the incorporation of a ddNTP 
(Figure 23.13). The resulting partially double-stranded hybrid, consisting of the full-length tem-
plate strand and its complementary chain-terminated product, is denatured during the first step 
of the next cycle, thereby liberating the template strand for another round of annealing, exten-
sion, and termination.

23.3.3.3 Electrophoresis, Sequence Analysis, and Mitotype Designations
The cycle sequencing products can be separated using electrophoresis in a 4% polyacrylamide 
denatured gel or a POP-6 polymer (Applied Biosystems) as the matrix for capillary electropho-
resis (Figure 23.14). Following data collection, sequence data analysis can be performed with the 
Sequencher™ software (Gene Codes Corporation, Ann Arbor). Figure 23.15 shows sequence data.

Sequencing of a region of the mtDNA genome should be performed twice. Additionally, 
both strands of a region of the mtDNA genome should be sequenced to reduce ambiguities in 
sequence determination. The sequences of evidence samples and reference samples such as that 
of the victim or suspect can be compared. The nomenclature used in reporting should be com-
patible with International Union of Pure and Applied Chemistry (IUPAC) codes.

23.3.3.3.1 Reporting Format
The rCRS is used as a reference standard to facilitate the designation of mitotypes. For reporting 
purposes, sequence differences relative to the rCRS are listed in data format. When a difference 
between an individual’s sequence and that of the rCRS sequence is observed, only the position 
(designated by a number) and the nucleotide differing from the reference standard are recorded. 
In this format, nucleotides identical to the rCRS are not listed. For example, at position 228 
(HV2), the rCRS has a G. If a mitotype carries an A at position 228, the individual’s mtDNA 
sequence is described as 228A. If an unresolved sequence ambiguity is observed at a position, 

Primer
DNA polymerase

dNTP

ddNTP

Template

Figure 23.13 Cycle sequencing reaction. The reaction requires DNA polymerase, a template, and a 
primer. During DNA synthesis, the dNTP is incorporated by a new phosphodiester bond with the primer. 
The incorporation of ddNTP blocks further DNA synthesis of the growing chain. (© Richard C. Li.)
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the base number for the position is listed followed by an N. For example, 228N means an unre-
solved sequence ambiguity was observed at position 228.

23.3.3.3.2 Insertions
The insertion site is described by noting the position (at 5′ to the insertion) followed by a deci-
mal point and a number. The number indicates the order of the insertions (e.g., 1 indicates the 
first insertion, 2 indicates the second, etc.). The base calling following the number indicates the 
inserted nucleotide (e.g., 524.1A, 524.2C).

23.3.3.3.3 Deletions
The deletion site designation is followed by the letter d. For example, a deletion at position 16,296 
is recorded as 16,296d.

23.3.3.3.4 Heteroplasmic Sites
The IUPAC codes for base calling can be applied to heteroplasmic sites. For example, an A/G 
heteroplasmy can be designated as R, and a C/T heteroplasmy can be designated as Y.

23.3.4 Interpretation of mtDNA Profiling Results
Interpretation guidelines are used when comparing sequencing results between evidence and 
reference samples. General guidelines were set forth by the Scientific Working Group on DNA 
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G G C T A A A G C T T G GC
G G C T A A A G C T T G G TC
G G C T A A A G C T T G G T GC
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G
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Figure 23.14 Diagram of the Sanger sequencing products. The DNA chain lengths are determined 
by the addition of ddNTP at different positions. The fluorescent dye-labeled cycle-sequencing prod-
ucts are separated using capillary electrophoresis. The fluorescent dyes are resolved by a detector, 
and the peaks corresponding to each DNA fragment are identified. (© Richard C. Li.)
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Analysis Methods (SWGDAM) and the DNA Commission of the International Society of 
Forensic Genetics (ISFG). In reporting mtDNA profiling results, the most common categories 
of conclusions are the following: cannot exclude, exclusion, and inconclusive result.

23.3.4.1 Exclusion
If the sequences of questioned and known samples are different, then the samples can be excluded 
as originating from the same source. It should be taken into account that higher mutation rates 
are found with the mtDNA genome than are found with the nuclear genome. The SWGDAM’s 
guidelines define that the conclusion of exclusion can be made if there are two or more nucleo-
tide differences between the questioned and known samples. Additionally, mutations seem to be 
more common in certain tissues. For this reason, the sources of the tissues analyzed should be 
taken into consideration.

23.3.4.2 Cannot Exclude
If the sequences are the same, the reference sample and evidence cannot be excluded as arising 
from the same source. When an mtDNA profile cannot be excluded, it is desirable to evaluate 
the weight of the evidence. In cases where the same heteroplasmy is observed in both questioned 
and known samples, its presence increases the strength of the evidence. However, if hetero-
plasmy is observed in a questioned sample but not in a known sample or vice versa, a maternal 
lineage still cannot be excluded.

23.3.4.3 Inconclusive Result
If the questioned and known samples differ by a single nucleotide, and no heteroplasmy is pres-
ent, the results are considered to be inconclusive.
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24
Forensic DNA Databases

Tools for Crime Investigations

24.1 Brief History of Forensic DNA Databases
Forensic DNA databases are networks for exchanging information among law enforcement 
agencies to assist in solving crimes. For example, forensic DNA databases allow forensic labo-
ratories to search DNA profiles against the databases to identify criminals. In 1995, the United 
Kingdom established the world’s first national DNA database, NDNAD, in England and Wales. 
Scotland and Northern Ireland have their own databases but also submit their profiles to 
NDNAD. NDNAD demonstrated initial success in solving crimes. Three years later, the United 
States introduced its national Combined DNA Index System or CODIS. By the end of 1998, other 
countries (such as Austria, Germany, the Netherlands, New Zealand, and Slovenia) had also 
introduced national DNA databases. Table  24.1 describes some of these national DNA data-
bases. This chapter will focus on CODIS.

24.2 Infrastructure of CODIS
In the United States, a pilot project of DNA databasing was initiated by the Federal Bureau of 
Investigation (FBI) and 14 participating state and local laboratories. Subsequently in 1994, the 
Congressional DNA Identification Act authorized the FBI to establish a national DNA data-
base including “DNA identification profiles of persons convicted of crimes, and analyses of 
DNA samples recovered from crime scenes and from unidentified human remains.” By 1997, 13 
STR loci were selected and in 1998 were implemented as the core loci for the national database, 
known today as CODIS. All 50 states, the District of Columbia, the federal laboratories, the US 
Army Criminal Investigation Laboratory, and Puerto Rico contribute to CODIS.

CODIS has three hierarchical levels: the Local DNA Index System (LDIS), the State DNA 
Index System (SDIS), and the National DNA Index System (NDIS) (Figure 24.1). The LDIS is 
maintained at crime laboratories operated by police departments, sheriff’s offices, and local 
agencies. All forensic DNA profiles originating at the local level are stored in the LDIS and 
are transmitted to the SDIS and NDIS. Each state maintains a SDIS, which is typically oper-
ated by a designated state laboratory. An SDIS also stores the DNA profiles generated from 
state laboratories. The quality assurance standards for a qualified laboratory were set up by the 
DNA Advisory Board in 1998. The periodic revision of the standards is now carried out by the 
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Scientific Working Group of DNA Analysis and Methods (SWGDAM). The SDIS enables local 
laboratories within that state to compare DNA profiles. SDIS also serves as the communica-
tion path through which the LDIS and NDIS are able to exchange messages. Communication 
is mediated using a secured network with encryption. Only authorized personnel, approved by 
the FBI, have access to CODIS network terminals and servers. NDIS is the highest level of the 
CODIS infrastructure, which contains DNA profiles contributed by participating local and state 

Table 24.1 Characteristics of National DNA Databases

Country
Year 

Established Suspect Entry Criteria

Convicted 
Offender Entry 

Criteria Removal Criteria

United Kingdom 1995 Any recordable 
offense that leads 
to imprisonment

Entered as 
suspect

Never removed

New Zealand 1996 No suspects entered Relevant 
offense 
(≥7 years in 
prison)

Never removed 
unless 
conviction 
quashed

Austria 1997 Any recordable 
offense that leads 
to imprisonment

Entered as 
suspect

Only after 
acquittal

The Netherlands 1997 No suspects entered 
except when 
suspect’s DNA is 
tested for case

Offense leading 
to >4 years in 
prison

20–30 years 
after conviction

Germany 1998 Offense leading to 
>1 year in prison

After court 
decision

After acquittal 
or 5–10 years 
after conviction 
if prognosis 
good

Slovenia 1998 Any recordable 
offense that leads 
to imprisonment

Entered as 
suspect

Depends on 
severity of 
crime

United States 1998 No suspects entered; 
under revision

Depends on 
state law

Depends on 
state law

Finland 1999 Offense leading to 
>1 year in prison

Entered as 
suspect

Only after 
acquittal

Sweden 2000 No suspects entered Offense leading 
to >2 years in 
prison

10 years after 
release from 
prison

Switzerland 2000 Any recordable 
offense that leads 
to imprisonment

Entered as 
suspect

After acquittal 
or 5–30 years 
after conviction

France 2001 No suspects entered Sexual assaults 
and serious 
crimes

40 years after 
conviction

Source: Adapted from Jobling, M.A. and Gill, P., Nat Rev Genet, 5, 739–751, 2004.



24.3 Indexes of CODIS

487

laboratories. Additionally, NDIS stores DNA profiles generated by federal laboratories, such as 
those generated by the FBI and the US Army Criminal Investigation Laboratory. NDIS enables 
qualified state laboratories to compare DNA profiles. Searches of DNA profiles can be conducted 
at the national level. All DNA profiles submitted to NDIS are automatically searched weekly 
against the DNA profiles from other states. NDIS is administered by the FBI, which provides 
software, training, and support for all participating laboratories. Many law enforcement labora-
tories from other countries utilize the CODIS software for their own databases. However, labo-
ratories in foreign countries do not have any access to the CODIS system. Nevertheless, a search 
through the CODIS database may be requested either from the FBI or International Criminal 
Police Organization (Interpol). Conversely, a search of an international DNA database can be 
arranged through Interpol.

24.3 Indexes of CODIS
The DNA profiles entered in CODIS are organized into categories known as indexes (Figure 24.2). 
The Convicted Offender Index contains DNA profiles of individuals convicted of crimes. The 
Arrestee Index contains DNA profiles of arrested individuals. It varies in SDIS databases based 
on each state’s law permitting the collection of DNA samples from arrestees. The Forensic Index 
contains DNA profiles, also known as forensic profiles, derived from crime scene evidence, 
potentially originating from perpetrators but not including suspects.

Additionally, the FBI also established the National Missing Person DNA Database (NMPDD) 
Program for the identification of missing and unidentified persons at the national level. The 
DNA profiles entered into the NMPDD are categorized into three indexes that can be searched 
against each other. The Missing Person Index and the Unidentified Human Remains Index con-
tain DNA profiles from missing persons and unidentified human remains, respectively. The 
Biological Relatives of the Missing Person Index contains DNA profiles voluntarily contributed 
from relatives. This index may also store patrilineal or matrilineal DNA profiles from the rela-
tive such as a biological father, mother, or child of the missing person to assist investigations. 
Additionally, a pedigree chart (a diagram showing the relationship between the missing person 
and relatives) can be created.

NDIS

SDIS1 SDIS2

LDIS1 LDIS2 LDIS1 LDIS2 LDIS3

Figure 24.1 CODIS infrastructure. All DNA profiles originate at LDIS, and then enter SDIS and 
NDIS. SDIS allows laboratories within states to exchange DNA profiles. NDIS is the highest level 
of the infrastructure. It allows the participating laboratories to exchange DNA profiles on a national 
level.
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In 2010, the FBI established a Rapid DNA Program Office for the purpose of developing rapid 
DNA technology. Rapid DNA technology is a fully automated process of performing STR analy-
sis within 1–2 h to generate a CODIS core STR profile from a reference sample such as a buccal 
swab (Figure 24.3). The Rapid DNA Index System (RDIS) is the proposed index of NDIS. It shall 
be an integrated system capable of applying rapid DNA technology and carrying out database 
searches from police custody or booking units by trained police officers. The entire process, 
including obtaining any match from a database search, shall take less than 2 h.

The forensic DNA analysis of a reference sample, taken from an individual, takes 2–3 days 
if processed immediately in a forensic laboratory. The entire process includes the extraction of 
DNA from a sample, DNA quantification, PCR amplification, electrophoresis, and data collec-
tion and analysis. After being transported to a laboratory for processing, samples are usually 
stored and batched in laboratories prior to analysis. A typical turnaround time for analysis of 
such a sample is 1–3 months. While the sample is processed, the suspect is often released from 
custody. Perpetrators released on police bail may commit another crime. Thus, it is desirable to 
develop new technology that is capable of completing the forensic DNA analysis and database 
search while the suspect remains in custody. This technology would also facilitate rapid exclu-
sion of a suspect, thus redirecting the investigation.

Rapid DNA instruments are portable, compact instruments designed to be deployed into 
field testing. These instruments are fully automated for processing reference samples in order to 
generate a DNA profile in less than 2 h. Several versions of the instruments have recently been 
developed by manufacturers and some of them are currently commercially available. In addition 
to rapid DNA instruments, rapid DNA profiling may be achieved through alternative processes. 
First, it can be achieved through rapid services that offer a quick turnaround time (<2 h). Second, 
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County Center for Forensic Sciences, 7. Suffolk County Crime Laboratory, and 8. Westchester County 
Department of Laboratories & Research Division of Forensic Sciences. (© Richard C. Li.)
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rapid DNA techniques can be applied using standard laboratory equipment but implementing 
specialized protocols to generate CODIS-compatible profiles in less than 2 h.

The primary goal of the rapid DNA initiative is to produce a CODIS-compatible DNA profile 
of a sample taken from an arrestee in police custody and to search DNA databases during the 
booking process in less than 2 h. This technology could be used, for example, to quickly identify 
other unsolved crimes or eliminate suspects, which can aid in investigative decision making. 
It can also potentially be useful for other investigations, such as identifying human remains in 
mass disasters; identifying detainees in counterterrorism applications; and, for immigration 
and border agents, confirming and verifying individual identifications or family relationships.

24.4 Database Entries
Currently, over 190 public law enforcement laboratories participate in CODIS across the United 
States. As of April 2013, CODIS contains the DNA profiles of more than 10 million convicted 
felons, over 1 million arrestees, and half a million crime scene samples. The proportion of the 
population represented in the database is approximately 3%. The NDIS is one of the largest DNA 
databases containing DNA profiles in terms of absolute numbers. Each CODIS entry consists of 
the DNA profile of the sample and the specimen identification number, as well as the informa-
tion of the laboratory submitting the DNA profile and the laboratory analyst that performed the 
DNA analysis. The entry does not include case information or the personal information of the 
offenders or arrestees. Access to CODIS profiles is restricted to criminal justice agencies for law 
enforcement identification purposes.

The SDIS database retains samples collected from convicted offenders after DNA profiles 
are obtained. State policies vary in the retention of samples and DNA profiles in situations of 

Figure 24.3 A rapid DNA instrument. A compact instrument that is designed to process swab 
samples and to produce DNA profiles within 2 h in the field. (© Richard C. Li.)
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dismissed charges, acquittal, or no charges for arrestees. Some states, such as Virginia, destroy the 
DNA sample and expunge the DNA profile from the database. Other states, such as California, 
require a petition to destroy the sample and expunge the DNA profile from the database. There 
are two major reasons for sample retention. First, the sample is needed for confirmatory pro-
cesses for the purpose of quality assurance and control. In confirmatory processes, the DNA 
analysis of the original sample is repeated and compared against the prior analysis. Second, the 
retention of samples allows for possible retesting if new technology becomes available. It also 
allows retesting of a sample for purposes of updating with expanded loci. Considerable debate 
has surrounded the retention of samples. It can be argued from the opposite perspective that 
the database could reveal private genetic information that could then be misused. The objection 
is based on concern for the protection of privacy rights. If a sample were made available to an 
unauthorized person, confidential information could be disclosed.

24.5 Database Expansion
Currently, all 50 states have authorized the collection of samples from convicted felons for DNA 
databasing. Over the years, the demand for the utilization of databases has increased sharply 
(Figure 24.4). More jurisdictions are incorporating more felonies into the lists of crimes that 
require DNA profiles, and some jurisdictions plan to include all felonies in such databases. 
Additionally, the database system is projected to include the profiles of minor criminals, because 
statistics show that most offenders found guilty of serious crimes were previously convicted 
for minor crimes. Broadening the size of the database and including samples from more types 
of crimes could lead to the assumption that the number of crimes solved would also increase. 
Although state laws vary, each state has its own statute governing the entry criteria of the data-
base samples. More and more states are authorizing the collection of additional types of DNA 
samples, including individuals convicted of misdemeanor crimes and adult felony arrestees who 
have not yet been convicted for the offense. It is known that offenders tend to commit multiple 
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crimes. Thus, including DNA profiles of arrestees in the database is beneficial in catching serial 
offenders and potentially preventing future crimes. Virginia is the first state to collect DNA 
from violent-felony arrestees, among other crimes. Over the years, more than half of states in 
the United States have amended their law to include all felony arrestees or a subset of arrestees 
for felonies that involve violence or sexual assault.

In 2009, Alonzo King was arrested in Wicomico County, Maryland, on violent assault 
charges. Maryland’s DNA Collection Act authorizes law enforcement agencies to collect DNA 
samples from an individual who is arrested for violent crimes. During the booking process, 
under state law, King’s buccal swabs were collected for forensic DNA identification. When King’s 
DNA profile was entered into Maryland’s SDIS, it matched to a crime scene DNA profile from an 
unsolved rape case in 2003. Based on the DNA evidence, King was indicted for first-degree rape 
by a grand jury. The defendant filed a motion to suppress the DNA evidence. King argued that 
using his DNA to investigate his connection to the 2003 rape was an unreasonable search and 
seizure under the Fourth Amendment, since the police had no reason to suspect his involvement 
in the 2003 rape. During the trial at Wicomico County Circuit Court, King’s motion was denied. 
He was convicted of rape and sentenced to life in prison. The Court of Appeals of Maryland, 
the state’s highest court, upheld that the DNA Collection Act was constitutional. The police had 
probable cause to arrest King on the assault charge, and thus collecting King’s DNA sample was 
a reasonable search. However, the court overturned the low court and reversed King’s convic-
tion. It stated that the DNA Collection Act was inappropriately applied to King in this case. 
Thus, investigating King without probable cause for the unrelated rape was unconstitutional. 
To determine whether the Fourth Amendment permits states to collect and analyze the DNA of 
arrestees, a divided Supreme Court ruled 5–4 and reversed the Court of Appeals. The Supreme 
Court’s judgment ruled that Maryland has the right to collect DNA evidence from individuals 
arrested for serious crimes. The ruling reflects the Supreme Court’s view on the balance between 
the interest of criminal justice systems in solving violent crimes and an individual’s interest in 
the Fourth Amendment, which protects them from unreasonable searches.

Some jurisdictions, such as the United Kingdom, allow DNA samples to be taken from indi-
viduals suspected of committing recordable offenses that may lead to prison sentences. In con-
trast, DNA profiles from suspects are not eligible for entry into CODIS. In some jurisdictions, 
it has been suggested that databases include many more offenders and suspects, as well as the 
general public. One advantage of including an entire population in a database is the ability to 
identify missing, kidnapped, and abducted individuals in addition to victims of major accidents 
and mass fatalities. Nevertheless, debates concerning the need to balance the benefits and dan-
gers of developing a broader database will inevitably continue.

24.6 DNA Profiles
Currently, the CODIS software supports the storage and search of DNA profiles of short tan-
dem repeat (STR), Y chromosome STR (Y-STR), and mitochondrial DNA (mtDNA). Y-STR and 
mtDNA profiles may only be searched within NMPDD-related indexes. The CODIS software 
no longer supports searches of DNA profiles generated by restriction fragment length polymor-
phism (RFLP) analysis. The 13 core CODIS STR loci are CSF1PO, FGA, THO1, TPOX, VWA, 
D3S1358, D5S818, D7S820, D8S1179, D13S317, D16S539, D18S51, and D21S11. DNA profiles 
are entered into one of the indexes, such as convicted offender, arrestee, forensic, unidenti-
fied human remains, missing person, or a relative of a missing person. There is a minimum 
loci requirement for each DNA profile entering CODIS: 13 core CODIS loci are required for a 
DNA profile entering the Convicted Offender Index and the Arrestee Index; 13 core CODIS loci 
and amelogenin, a sex-typing marker, are required for a DNA profile entering the Relatives of 
Missing Person Index; at least 10 CODIS loci are required (all 13 core loci must be tested) for the 
Forensic Index; and at least 8 loci and amelogenin are required (all 13 core loci must be tested) 
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for the Missing Person and Unidentified Human Remains Index. The DNA profiles must be gen-
erated by an accredited and audited laboratory in accordance with the FBI’s Quality Assurance 
Standards using approved commercially available kits. As the database is growing rapidly, the 
chances of finding incidental matches among DNA profiles is increasing. To increase discrimi-
nation power, it has recently been proposed that CODIS core loci be expanded to include 20 or 
more markers (Chapter 20). Additionally, the expanded core loci share additional loci compat-
ible with international standards for forensic DNA analysis, which facilitates the exchange of 
information with international law enforcement agencies.

24.7 Routine Database Searches for Forensic Investigations
The ultimate goal of the database utilization is to provide investigative leads for law enforcement 
in solving crimes, particularly in cases where no suspect has yet been identified. Currently, DNA 
profiles uploaded to NDIS are automatically searched once a week (Figure 24.5). A hit is a match 
made from the information provided by comparing a target DNA profile against the DNA profiles 
contained in the database. There are two types of CODIS hits: an offender hit provides the identity 
of a potential suspect of a crime, while a forensic hit reveals the linkage between two or more crime 
scenes. Once a hit is identified, the match is verified by the laboratories that originally processed 
the evidence. A verified CODIS hit can be utilized as probable cause to allow law enforcement 
to obtain a court order to collect a DNA sample from a suspect. Collecting DNA with a warrant 
ensures admissibility in court. Investigation-aided cases are those assisted by CODIS hits, includ-
ing case-to-case matches as well as case-to-offender matches. The number of investigations aided 
is a useful measure of the successful application of the database (Figure 24.6). As of April 2013, 
over 207,800 hits had been made with CODIS assistance in more than 199,200 investigations.

24.7.1 Case-to-Offender Searches
Matches of profiles from the Forensic Index and the Offender Index reveal the identities of per-
petrators of crimes. For example, in 1998, a Florida man, Leon Dundas, became a suspect in a 
rape case but refused to provide his DNA reference sample for testing. Dundas was killed a year 
later in an illegal drug deal. Thus, a postmortem sample of Dundas was obtained and his DNA 
profile was compared with the Forensic Index of CODIS. It was discovered that Dundas’s profile 
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Figure 24.5 Example of a weekly routine CODIS search. (© Richard C. Li.)
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matched the DNA sample found in the rape case. Additionally, his DNA profile was linked to 
several other unsolved rapes in Jacksonville and Washington, DC. Such cases can now be solved 
by utilizing DNA databases.

24.7.2 Case-to-Case Searches
A target DNA profile from a crime scene is also searched against the profiles stored in the 
Forensic Index of the database. Matches of profiles among the target profile and the profile in the 
Forensic Index can link separate crime scenes and aid in identifying serial offenders. This helps 
law enforcement agencies in multiple jurisdictions to coordinate their investigations and share 
leads. For example, in 1996, two young girls were abducted from bus stops in St. Louis. Both girls 
were raped and DNA samples were collected. Both DNA profiles pointed to the same perpetra-
tor. In 1999, the St. Louis police decided to reanalyze the samples using new STR technology 
through the CODIS database. The database found a match to a different rape case, to which the 
perpetrator, Dominic Moore, had already confessed, thus identifying him as the perpetrator of 
the 1996 rapes.

24.7.3 Search Stringency and Partial Matches
Database searches are carried out using the CODIS software with three stringency levels, 
which allow the search of complex forensic profiles against offender profiles (Figure 24.7). A 
high-stringency match requires an exact match in which all alleles are matched at each locus 
between the target and candidate profiles. A moderate-stringency match, as defined by the FBI, 
is a candidate match “between two single source profiles having at each locus all of the alleles 
of one sample represented in the other sample.” In a moderate-stringency match, allelic drop-
outs in a target or candidate profile are allowed, possibly resulting in a partial match at some 
loci. As a result, high-stringency matches are automatically included in a moderate-stringency 
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search. In a low-stringency search, both mismatches and allelic dropouts are allowed. Presently, 
NDIS searches are only carried out at moderate stringency. During forensic DNA analysis, DNA 
degradation may prevent full DNA profiles from being processed, producing only partial profiles. 
Additionally, mixture profiles derived from forensic samples containing DNA contributed by 
more than one individual may be encountered. Furthermore, due to mutations, null alleles may 
occur in the profiles produced with some primer sets but not other primers. Therefore, search-
ing at moderate stringency allows the detection of matches under the situations described above. 
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Such moderate-stringency searches between the Forensic Index and Offender Index may occa-
sionally generate partial match profiles. Since a partial match is not an exact match of the two 
profiles, further investigation is needed. For instance, additional Y-STR and mtDNA analysis is 
needed to eliminate unrelated individuals.

24.8 Familial Searches
Familial search, initiated in the United Kingdom, is a new method of applying databases in 
criminal investigations. It is known that, in the United States, nearly half of prison inmates have 
close relatives who have also been incarcerated. Familial search is based on the assumption that 
close relatives share more alleles of DNA profiles than unrelated individuals. Thus, databases 
may be utilized to identify perpetrators by finding a close relative, if the close relative has been 
convicted of a crime and is listed in the database. Familial search is an intentional search of 
a target crime scene profile against an offender database to obtain a list of candidate profiles 
that are similar to the target profile. This list may include the profile of a close relative of the 
perpetrator, who is the source of crime scene evidence. These matches most frequently involve 
siblings, parents, or children. The investigative leads produced by familial searches allow law 
enforcement to conduct further investigations to identify the perpetrator.

The first familial search leading to a successful prosecution was conducted in Surrey, England. 
In 2003, a truck driver was killed after a brick was thrown through his windshield from a bridge. 
The perpetrator’s DNA profile was obtained from the brick. A search of the UK’s national DNA 
database revealed no match for the perpetrator. Next, a familial search of the database was con-
ducted. The system identified a close relative that led police to identify the perpetrator, Craig 
Harman, who was then convicted of manslaughter.

24.8.1 Legal and Ethical Issues of Familial Search
The use of forensic databases involves a balance of individual civil rights and the interests of 
the criminal justice systems. Many concerns have been raised, including the potential for these 
searches to violate the privacy of unrelated people whose genetic profiles happen to resemble 
those of individuals included in the databases. In the United States, the Fourth Amendment 
protects against unreasonable searches and seizures. The permissibility of familial searching 
under the Fourth Amendment is yet to be addressed by courts. The collection of biological mate-
rial for the initial creation of a profile for law enforcement purposes is subject to the Fourth 
Amendment implications. In terms of familial searches, some legal experts argue that the bio-
logical materials are not collected directly from the individuals for a familial search, and that 
these individuals may thus be protected under the Fourth Amendment. Others argue, however, 
that the Fourth Amendment protects the initial creation of the profile, including the sample 
collection, forensic DNA analysis, and the databasing. They argue that the Fourth Amendment 
may not protect subsequent investigations of DNA profiles during familial searches. In addition, 
the CODIS database consists of a high percentage of profiles from individuals of racial minor-
ity groups, including African Americans. Familial searches can disproportionately focus on a 
specific racial group.

Familial searches are rare in the United States. Two jurisdictions, Maryland and the District 
of Columbia, have laws prohibiting the use of familial searches. Familial searches are not con-
ducted at the NDIS. While familial searches are now being performed in several jurisdictions in 
the United States, policies on familial searches vary among jurisdictions. The major issues relate 
to criteria for privacy, information release, search approval, and the types of crimes eligible for 
familial searches. Currently, California, Colorado, Texas, and Virginia have state legislation per-
mitting familial searches. Familial searches are initiated when a specific suspect is not known, 
and the cause for the search needs to be justified. Familial searches are usually conducted for 
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crimes that pose a substantial threat to public safety, typically those cases involving the most 
serious offenses. Additionally, familial searches are only conducted after a routine search of a 
DNA profile has yielded no match in the database.

In 2003, for example, a crime scene DNA sample of a closed rape and murder case, commit-
ted decades previously, was reanalyzed using forensic DNA techniques. The crime scene DNA 
profile was compared to the profile of a man, Darryl Hunt, who was then imprisoned for the 
crime. Surprisingly, the crime scene DNA profile did not match either that of Hunt or those of 
convicted felons in the database. However, the database search revealed a close relative of the 
true perpetrator and thus led law enforcement to identify Willard Brown as the perpetrator. 
Brown was sentenced to life imprisonment. Additionally, Hunt was exonerated after 18 years in 
prison.

24.8.2 Familial Search Strategies
The familial search is usually carried out using specially designed software. Although the 
CODIS software is not designed for familial search, it can be used for familial search through a 
low-stringency search, which may result in a list of candidate profiles including close relatives of 
individuals, such as parent–offspring or full-sibling relatives. In a large offender DNA database, 
similar DNA profiles from unrelated people are often observed due to shared alleles. Therefore, 
the candidate profile list may also include unrelated individuals whose DNA profiles are similar 
to the target profile. As a result, a familial search can provide a list of potential candidates con-
sisting of hundreds of profiles, which would be too labor intensive to pursue through further 
investigations. Several methods can be used to determine a cutoff analytical threshold in order 
to limit a pool of candidate profiles and exclude unrelated individuals from familial searches 
(Figure 24.8).

24.8.2.1 Identity-by-State and Kinship Index Method
The identity-by-state (IBS) method compares the number of shared alleles and loci between a 
target forensic profile and the offender profiles in a database but does not take into account allele 
frequencies. The analytical threshold for a familial search is determined by a preset number 
of shared alleles or loci in order to prompt further investigation. For example, some states use 
15 shared alleles as the analytical threshold to be considered as a candidate, while other states 
require at least one shared allele for each locus. Additionally, this method can prioritize a pool of 
candidates based on the highest to the lowest number of shared alleles for investigation.

The Kinship Index (KI) method is a likelihood ratio–based method that evaluates the familial 
match by comparing the probability that two DNA profiles are from related individuals to the 
probability that they are unrelated. The KI method analyzes the allele frequency data, includ-
ing all CODIS core loci, to calculate the Combined Kinship Index. The KI may vary based on 
the allele frequency data across the population. Thus, the accuracy of the KI method relies on 
the relevance of the population data set analyzed. False inclusions or exclusions may occur if 
nonrelevant population data are utilized. The KI method also allows the generation of a ranked 
candidate list according to the probability that the individuals are related. Generally speaking, 
the accuracy of the KI method is higher than that of the IBS method. However, using both IBS 
and KI methods is better than using a single method alone for familial search.

24.8.2.2 Focusing on Rare Alleles
During a familial search, target DNA profiles may contain rare alleles with low allelic frequen-
cies. The chance of sharing rare alleles for two close relatives is higher than for two unrelated 
individuals. If a target profile carries a rare allele, it can be used to narrow the pool of candidates.

For example, Jeffrey Gafoor, then 23, had been living in a suburban neighborhood in Cardiff, 
Wales. He had a reputation for being a loner. Besides working in his family-owned shop, he spent 
most of his time at home. On February 13, 1988, Gafoor entered 7 James Street in the Butetown 
area of Cardiff. The first-floor unit was temporarily occupied by Lynette White, a 20-year-old 
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woman who was working as a prostitute in the area. Gafoor went there for the purpose of receiv-
ing sexual services. He left the scene in the early hours of Valentine’s Day. On Valentine’s night, 
White’s body was discovered. She suffered from more than 50 stab, cut, and slash wounds as well 
as defensive wounds on her hands. The body was dragged to the corner of the room adjacent to 
the bed, the only piece of furniture in the room.

Gafoor left blood and semen evidence at the scene. He bled during the murder and deposited 
bloodstains at the scene. Additionally, he left seminal stains at the scene; the semen had no mea-
surable level of sperm and most likely came from an individual who had a medical condition 
known as azoospermia (Chapter 14). After the murder, Gafoor lived at the same place as he did 
beforehand and kept the same job for many years.

Two years later, three local men, known as the “Cardiff Three,” were convicted of White’s 
murder and sentenced to life in prison. In 1992, however, their convictions were reversed by 
the court of appeal. Subsequently, the crime scene evidence was tested using new techniques 
in forensic DNA analysis that were not available in 1988. A DNA profile was obtained from 
the crime scene. A familial search revealed a similar profile from a 14-year-old boy in the UK 
National DNA Database. In particular, there was a rare allele match between the crime scene 
and the candidate DNA profiles. This search led to the further investigation of Gafoor, who was 
the uncle of the boy. Gafoor was charged with murder.
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Figure 24.8 Example of a familial search workflow. (© Richard C. Li.)
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24.8.2.3 Excluding Candidates through Y-STR Screening
The vast majority of DNA profiles in CODIS come from males. Patrilineal markers, such as 
Y-STR loci, are successfully utilized to screen the candidates to verify the relationship between 
two individuals. This analysis helps to identify first-order relatives as well as paternal half-
siblings. STR loci beyond the CODIS core loci and maternal lineage makers, such as mito-
chondrial DNA typing systems, can be used to narrow the pool of candidates and eliminate 
coincidental partial matches. One or more of these methods can be incorporated to evaluate 
highly ranked candidates.

For example, Lonnie Franklin lived in a southern Los Angeles neighborhood. Throughout 
the 1980s, Franklin worked for the city as a maintenance worker and a sanitation truck opera-
tor. His neighbors recalled that he often brought prostitutes to a camper parked in the backyard 
of his house. He also took photos of nude women, which he kept in his garage. Nevertheless, to 
many of his neighbors, Franklin seemed to be a friendly person who often chatted with them.

Since 1985, the bodies of many women, most of which were prostitutes, had been dumped in 
an alley running along Western Avenue in a southern Los Angeles neighborhood. The victims 
had been shot and some had been strangled after sexual contact. DNA and ballistics analysis 
revealed that at least 10 of the murders had been committed by the same perpetrator. The per-
petrator was known to the general public as the “Grim Sleeper” because he had taken a 14-year 
break during the period in which these 10 murders had taken place. The crime scene DNA pro-
file did not match any profile in the database.

In 2008, the first familial search of the “Grim Sleeper” case was conducted by the California 
Department of Justice. California state law allows familial searches for high-profile cases if all 
other leads have been exhausted. However, all candidate DNA profiles were excluded through 
Y-STR screening. As a result, no candidate was identified as a possible relative of the “Grim 
Sleeper.” In 2010, a second search targeted partial matches that shared at least 15 alleles. It pro-
duced a list of 100 candidate profiles ranked by the likelihood that they were related. Y-STR was 
used as a screen tool to identify possible patrilineal relatives. This time, the search generated a 
match to a new DNA profile of a felon, which had recently been entered into California’s SDIS, in 
2009. The search suggested that the candidate was a relative of the source of the DNA from the 
crime scenes. This search led to the identification of Franklin as a suspect in the “Grim Sleeper” 
murders. Police detectives conducted surveillance and collected a discarded slice of pizza and a 
cup used by Franklin at a local restaurant for DNA identification. The DNA profile was identi-
cal to the crime scene DNA profiles. Franklin was arrested and was charged with ten counts of 
murder and one of attempted murder.
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25
Evaluation of the Strength of 

Forensic DNA Profiling Results

25.1 A Review of Basic Principles of Genetics
25.1.1 Mendelian Genetics
Mendel’s first law is the principle of segregation of alleles. Each pair of alleles segregates from 
others in the formation of gametes (mature reproductive cells such as spermatozoa and oocytes). 
One-half of the gamete carries one allele, and the other half carries the other allele.

Mendel’s second law is the principle of independent assortment of alleles. The segregation 
of each pair of alleles is independent of the segregation of other pairs during the formation of 
gametes.

Gametes are formed during a process known as meiosis, in which cells with haploid chromo-
some numbers (23 in humans) are produced by the division of cells with diploid chromosome 
numbers (46 in humans). A fertilized human egg thus contains a diploid number of chromo-
somes. A diploid is composed of 22 pairs of autosomes and 2 sex chromosomes (XX in females 
and XY in males).

Based on Mendelian principles, genes on different chromosomes assort independently 
of one another in gamete production. Genes residing very closely together on the same 
chromosome are usually inherited together. Thus, they do not assort independently and 
are called linked genes. Genes distant from each other on the same chromosome are usually 
inherited separately. This results from an exchange of segments between a pair of homolo-
gous chromosomes when the chromosomes are paired during the early phases of meiotic 
division. These types of gene-exchange events on homologous chromosomes are collec-
tively called crossing over, which results in the recombination of genes in a pair of chromo-
somes (Figure 25.1).

The Mendelian inheritances of genes can often be measured using probabilities. A prob-
ability is the ratio of the number of actual occurrences of an event to the number of possible 
occurrences. Additionally, the probability of two independent events occurring simultane-
ously is the product of each of their individual probabilities; this is known as the product rule 
of probability.

Mendelian principles apply to the inheritance of loci of the autosomal nuclear DNA 
genome commonly used for forensic testing. The Y-chromosomal genome is inherited 
paternally, which does not obey the rules for Mendelian principles. Mitochondria contain 
their own mitochondrial genomes and are inherited maternally. This maternal inheritance 
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of mitochondrial genes also does not obey the rules for Mendelian principles. The inheri-
tance of Y-chromosomal and mitochondrial genomes is referred to as non-Mendelian 
inheritance.

25.1.2 Population Genetics
Population genetics studies the causes of patterns of genetic variations within and among 
populations.

25.1.2.1 Allele Frequency
Allele frequency (p) can be calculated directly by counting the number of alleles of one type at a 
given locus and dividing it by the total number of alleles at that locus in a sampled population. 
This is called the gene counting method.

25.1.2.2 Genotype Frequency
Genotype frequency (P) observed at a given locus can be calculated by dividing the number of 
individuals with one genotype by the total number of individuals in a sampled population. Each 
genotype at the locus can be calculated separately. The summation of all genotype frequencies 
at that locus should equal 1.

25.1.2.3 Heterozygosity
Heterozygosity is the proportion of alleles, at a given locus, that are heterozygous and is calcu-
lated as

 
h p

i

= −∑1 2  (25.1)

where:
 h = heterozygosity
 p = allelic frequency of the locus for homozygotes

The amount of heterozygosity at a locus in a sampled population is a measure of genetic 
variation. The higher the heterozygosity, the more variation there is at a given locus.

Prophase Metaphase I Anaphase I

Figure 25.1 Crossing over hypothesis. Chromosomes are replicated prior to the first meiotic 
division. Each duplicate is called a chromatid, which forms into tetrads in the prophase. A 
crossover event occurs between the maternal and the paternal chromatids. Each chromatid 
breaks at the point of the cross and fuses with a portion of its counterpart. Chromosomes 
are associated with the microtubules during metaphase I and are pulled toward the spindle 
poles during anaphase I. The maternal and paternal homologs of one chromosome are shown. 
(© Richard C. Li.)
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25.1.2.4 Hardy–Weinberg Principle
The Hardy–Weinberg (HW) principle, independently discovered by two scholars in the 
early 1900s, allows predictions of genotype frequencies to be made based on allelic fre-
quencies. However, certain conditions must be met. The population must be large; mate 
randomly; and lack mutation, migration, and natural selection. If these conditions of the 
HW principle are met, the population will be in equilibrium, and the following results are 
expected:

 1. The frequencies of the alleles will not change from one generation to the next.

 2. Genotype frequencies can be predicted by the allelic frequencies (p2 and q2 for geno-
type frequencies of homozygotes and 2pq for genotype frequencies of heterozygotes). 
The sum of the genotype frequencies should equal 1.

 p pq q2 22 1+ + =  (25.2)

If the observed genotype proportions are different from those expected, one or more of the HW 
assumptions have been violated.

25.1.2.5 Testing for HW Proportions of Population Databases
To determine whether the genotypes of a population in question obey the HW principle, a popu-
lation database can be constructed. Samples (usually 100–200 samples for STR loci) are collected 
and analyzed at the loci of interest. Allelic frequencies are obtained by using the gene counting 
method. Table  25.1 shows the allelic frequencies of CODIS loci from a population database. 
The observed genotype frequencies at a given locus, as described earlier in Section 25.1.2.2, are 
calculated by dividing the number of individuals with one genotype by the total number of 
individuals in the population sampled. The expected genotype frequencies are calculated using 
p2, 2pq, and q2.

The observed and expected genotype frequencies are then compared using a chi-square test. 
The significance of the differences between observed and expected genotype frequencies can 
then be determined. The chi-square is calculated using the following formula:

 
χ2

1

2

=
−( )

=
∑

i

n
i i

i

O E

E
 (25.3)

where:
 Oi = ith observed genotype frequency
 Ei = ith expected genotype frequency
 n = total number of genotypes

Chi-square (χ2) is calculated as the sum of all genotypes of a given locus.
The chi-square value and the degrees of freedom (the number of genotypes minus the num-

bers of alleles) are then used to obtain a p value (not to be confused with the allelic frequency 
designated p) from a table of p values, and such tables can be found at the backs of most statis-
tics textbooks. If the p value exceeds 0.05 (5% significance level), the deviation of the expected 
genotype frequencies from the observed genotype frequencies is not considered statistically 
significant. Thus, the null hypothesis that the observed genotype frequencies fit the expected 
genotype frequencies predicted by the HW principle is not rejected if the p value is greater 
than 0.05.



Forensic Biology, Second Edition

506

Table 25.1 Allelic Frequencies of 13 CODIS STR Loci

Allele Allelic Frequency (%)

African American Caucasian Hispanic

D3S1358 (N = 210) (N = 203) (N = 209)

<12 0.476 0.000 0.000

12 0.238 0.000 0.000

13 1.190 0.246 0.239

14 12.143 14.039 7.895

15 29.048 24.631 42.584

15.2 0.000 0.000 0.000

16 30.714 23.153 26.555

17 20.000 21.182 12.679

18 5.476 16.256 8.373

19 0.476 0.493 1.435

>19 0.238 0.000 0.239

VWA (N = 180) (N = 196) (N = 203)

11 0.278 0.000 0.246

13 0.556 0.510 0.000

14 6.667 10.204 6.158

15 23.611 11.224 7.635

16 26.944 20.153 35.961

17 18.333 26.276 22.167

18 13.611 22.194 19.458

19 7.222 8.418 7.143

20 2.778 1.020 1.232

21 0.000 0.000 0.000

FGA (N = 180) (N = 196) (N = 203)

<18 0.278 0.000 0.000

18 0.833 3.061 0.246

18.2 0.833 0.000 0.000

19 5.278 5.612 7.882

19.2 0.278 0.000 0.000

20 7.222 14.541 7.143

20.2 0.000 0.255 0.246

21 12.500 17.347 13.054
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Table 25.1 (Continued) Allelic Frequencies of 13 
CODIS STR Loci

Allele Allelic Frequency (%)

African American Caucasian Hispanic

21.2 0.000 0.000 0.246

22 22.500 18.878 17.734

22.2 0.556 1.020 0.493

22.3 0.000 0.000 0.000

23 12.500 15.816 14.039

23.2 0.000 0.000 0.739

24 18.611 13.776 12.562

24.2 0.000 0.000 0.000

24.3 0.000 0.000 0.000

25 10.000 6.888 13.793

26 3.611 1.786 8.374

27 2.222 1.020 3.202

28 1.667 0.000 0.246

29 0.556 0.000 0.000

30 0.278 0.000 0.000

>30 0.278 0.000 0.000

D8S1179 (N = 180) (N = 196) (N = 203)

<9 0.278 1.786 0.246

9 0.556 1.020 0.246

10 2.500 10.204 9.360

11 3.611 5.867 6.158

12 10.833 14.541 12.069

13 22.222 33.929 32.512

14 33.333 20.153 24.631

15 21.389 10.969 11.576

16 4.444 1.276 2.463

17 0.833 0.255 0.739

18 0.000 0.000 0.000

D21S11 (N = 179) (N = 196) (N = 203)

24.2 0.279 0.510 0.246

24.3 0.000 0.000 0.000

(continued)
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Table 25.1 (Continued) Allelic Frequencies of 13 
CODIS STR Loci

Allele Allelic Frequency (%)

African American Caucasian Hispanic

26 0.279 0.000 0.000

27 6.145 4.592 0.985

28 21.508 16.582 6.897

29 18.994 18.112 20.443

29.2 0.279 0.000 0.246

30 17.877 23.214 33.005

30.2 0.838 3.827 3.202

30.3 0.000 0.000 0.000

31 9.218 7.143 6.897

31.2 7.542 9.949 8.621

32 0.838 1.531 1.232

32.1 0.000 0.000 0.000

32.2 6.983 11.224 13.547

33 0.838 0.000 0.000

33.2 3.352 3.061 4.187

34 0.838 0.000 0.000

34.2 0.279 0.000 0.493

35 2.793 0.000 0.000

35.2 0.000 0.255 0.000

36 0.559 0.000 0.000

>36 0.559 0.000 0.000

D18S51 (N = 180) (N = 196) (N = 203)

<11 0.556 1.276 0.493

11 0.556 1.276 1.232

12 5.833 12.755 10.591

13 5.556 12.245 16.995

13.2 0.556 0.000 0.000

14 6.389 17.347 16.995

14.2 0.000 0.000 0.000

15 16.667 12.755 13.793

15.2 0.000 0.000 0.000

16 18.889 10.714 11.576
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Table 25.1 (Continued) Allelic Frequencies of 13 
CODIS STR Loci

Allele Allelic Frequency (%)

African American Caucasian Hispanic

17 16.389 15.561 13.793

18 13.056 9.184 5.172

19 7.778 3.571 3.695

20 5.556 2.551 1.724

21 1.111 0.510 1.970

21.2 0.000 0.000 0.000

22 0.556 0.255 0.739

>22 0.556 0.000 1.232

D5S818 (N = 180) (N = 195) (N = 203)

7 0.278 0.000 6.158

8 5.000 0.000 0.246

9 1.389 3.077 5.419

10 6.389 4.872 6.650

11 26.111 41.026 42.118

12 35.556 35.385 29.064

13 24.444 14.615 9.606

14 0.556 0.769 0.493

15 0.000 0.256 0.246

>15 0.278 0.000 0.000

D13S317 (N = 179) (N = 196) (N = 203)

7 0.000 0.000 0.000

8 3.631 9.949 6.650

9 2.793 7.653 21.921

10 5.028 5.102 10.099

11 23.743 31.888 20.197

12 48.324 30.867 21.675

13 12.570 10.969 13.793

14 3.631 3.571 5.665

15 0.279 0.000 0.000

D7S820 (N = 210) (N = 203) (N = 209)

6 0.000 0.246 0.239

(continued)
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Table 25.1 (Continued) Allelic Frequencies of 13 
CODIS STR Loci

Allele Allelic Frequency (%)

African American Caucasian Hispanic

7 0.714 1.724 2.153

8 17.381 16.256 9.809

9 15.714 14.778 4.785

10 32.381 29.064 30.622

10.1 0.000 0.000 0.000

11 22.381 20.197 28.947

11.3 0.000 0.000 0.000

12 9.048 14.039 19.139

13 1.905 2.956 3.828

14 0.476 0.739 0.478

CSF1PO (N = 210) (N = 203) (N = 209)

6 0.000 0.000 0.000

7 4.286 0.246 0.239

8 8.571 0.493 0.000

9 3.333 1.970 0.718

10 27.143 25.369 25.359

10.3 0.000 0.246 0.000

11 20.476 30.049 26.555

12 30.000 32.512 39.234

13 5.476 7.143 6.459

14 0.714 1.478 0.957

15 0.000 0.493 0.478

TPOX (N = 209) (N = 203) (N = 209)

6 8.612 0.000 0.478

7 2.153 0.246 0.478

8 36.842 54.433 55.502

9 18.182 12.315 3.349

10 9.330 3.695 3.349

11 22.488 25.369 27.273

12 2.392 3.941 9.330

13 0.000 0.000 0.239

TH01 (N = 210) (N = 203) (N = 209)
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25.1.2.6 Probability of Match
The discriminating power of genetic loci used above can be measured by population match 
probability (Pm). Pm is defined as the probability of having a matching genotype between two 
randomly chosen individuals. The lower the Pm, the less likely a match between two randomly 
chosen individuals will occur. This is calculated as follows:

 
P p pq

i j

m = ( ) + ( )∑ ∑2 2 2
2  (25.4)

where:
 p and q = the frequencies of two different alleles
 Pm can also be used to compare the discriminating powers of different loci

Tables 25.2 through 25.4 show Pm values of loci commonly used for forensic applications, includ-
ing SNP, VNTR, and STR.

Table 25.1 (Continued) Allelic Frequencies of 13 
CODIS STR Loci

Allele Allelic Frequency (%)

African American Caucasian Hispanic

5 0.000 0.000 0.239

6 10.952 22.660 23.206

7 44.048 17.241 33.732

8 18.571 12.562 8.134

8.3 0.000 0.246 0.000

9 14.524 16.502 10.287

9.3 10.476 30.542 24.163

10 1.429 0.246 0.239

D16S539 (N = 209) (N = 202) (N = 208)

8 3.589 1.980 1.683

9 19.856 10.396 7.933

10 11.005 6.683 17.308

11 29.426 27.228 31.490

12 18.660 33.911 28.606

13 16.507 16.337 10.337

14 0.957 3.218 2.404

15 0.000 0.248 0.240

Source: Budowle, B., et al., J Forensic Sci, 44, 1277–1286, 
1999. With permission.
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25.2 Statistical Analysis of DNA Profiling Results
It is desirable to evaluate the strength of DNA profiling results, particularly if two DNA pro-
files match. A DNA profile from crime scene evidence and a profile from a suspect may be 
the same for two reasons: (1) the crime scene sample may have come from the suspect or (2) 
the suspect happens to have the same profile as the individual who left the evidence found 
at the crime scene. The significance of a match between DNA profiles can be evaluated by 
using statistical calculations that determine the rarity of a specific DNA profile in a rele-
vant population. The statistical evaluation of the significance can be included in a case report 

Table 25.2 Heterozygosity and Pm Values of 
Six SNP Loci

Locus Allele Heterozygosity Pm

DQA1 7 0.828 0.053

LDLR 2 0.493 0.379

GYPA 2 0.498 0.376

HBGG 3 0.508 0.360

D7S8 2 0.476 0.388

GC 3 0.592 0.235

Average 0.566

Product 2.5 × 10−4 

(1 in 4000)

Source: Office of Justice Programs, National Institute 
of Justice, US Department of Justice, The 
Future of Forensic DNA Testing: Predictions 
of the Research and Development Working 
Group, 2000.

Table 25.3 Heterozygosity and Pm Values of Six VNTR Loci

Locus Bins Heterozygosity Pm

D1S7 28 0.945 0.0058

D2S44 26 0.926 0.0103

D4S139 19 0.899 0.0184

D10S28 24 0.943 0.0063

D14S13 30 0.899 0.0172

D17S79 19 0.799 0.0700

Average 0.902

Product 8.26 × 10–12 (1 in 1.2 × 1011)

Source: Office of Justice Programs, National Institute of Justice, US 
Department of Justice, The Future of Forensic DNA Testing: 
Predictions of the Research and Development Working Group, 2000.
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(Figure 25.2). Guidelines for DNA profile interpretation such as those issued by the National 
Research Council, the DNA Advisory Board, and the European DNA Profiling Group can be 
consulted.

25.2.1 Genotypes
The approaches to performing statistical analysis are (1) calculation of profile probability and 
(2) use of the likelihood ratio method. Although profile probability is the most commonly used 
method because of its simplicity, both approaches lead to the same conclusion.

25.2.1.1 Profile Probability
Profile probability can be calculated based on the following steps:

 1. The locus genotype frequency can be calculated as follows; p and q are the allelic fre-
quencies observed in the database for a given allele:
Locus genotype frequency for homozygotes:

 P pi =
2  (25.5)

Table 25.4 Heterozygosity and Pm Values for CODIS Loci

Locus Allele

Caucasian American African American

Heterozygosity Pm Heterozygosity Pm

CSF1PO 11 0.734 0.112 0.781 0.081

TPOX 7 0.621 0.195 0.763 0.090

TH01 7 0.783 0.081 0.727 0.109

VWA 10 0.811 0.062 0.809 0.063

D16S539 8 0.767 0.089 0.798 0.070

D7S820 11 0.806 0.065 0.782 0.080

D13S317 8 0.771 0.085 0.688 0.136

D5S818 10 0.682 0.158 0.739 0.112

FGA 19 0.860 0.036 0.863 0.033

D3S1358 10 0.795 0.075 0.763 0.094

D8S1179 10 0.780 0.067 0.778 0.082

D18S51 15 0.876 0.028 0.873 0.029

D2S11 20 0.853 0.039 0.861 0.034

Average 0.7812 0.7866

Product 1.738 × 10−15 

(1 in 
5.753 × 1014)

1.092 × 10−15 

(1 in 9.161 × 1014)

Source: Office of Justice Programs, National Institute of Justice, US Department of Justice, The 
Future of Forensic DNA Testing: Predictions of the Research and Development Working 
Group, 2000.
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Locus genotype frequency for heterozygotes:

 P pqj = 2  (25.6)

 2. Profile probability can then be calculated based on the product rule by multiplying all 
the locus genotype frequencies calculated as above.

The lower the profile probability is, the less likely that an individual chosen at random will have 
a coincident match with the DNA profile of the evidence sample. Table 25.5 shows calculations 
of profile probability from a DNA profile.

25.2.1.1.1 Structured Populations
The above calculation of profile probability is based on the assumption that a randomly 
selected individual is unrelated to a perpetrator. However, it is likely that the individual and 
the perpetrator are from the same subpopulation (groups within a population) and are thus not 
completely independent. Mating is more likely to occur within subpopulations than between 
subpopulations. As a result, the proportion of homozygotes increases and the proportion of 
heterozygotes decreases in a subpopulation because individuals in a subpopulation appear to 
be related.

Figure 25.2 An example of a laboratory report. (© Richard C. Li.)
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Table 25.5 Calculation of Profile Probability of STR Profile with 13 CODIS Loci

Locus Profile
Allelic 

Frequencya Formula Locus Genotype Frequency

CSF1PO 10 0.25369 2pq 0.165

12 0.32512

D3S1358 14 0.14039 2pq 0.0691

15 0.24631

D5S818 11 0.41026 p2 0.168

11 0.41026

D7S820 10 0.29064 2pq 0.117

11 0.20197

D8S1179 13 0.33929 p2 0.115

13 0.33929

D13S317 11 0.31888 p2 0.102

11 0.31888

D16S539 11 0.27228 2pq 0.185

12 0.33911

D18S51 15 0.12755 2pq 0.00911

19 0.035710

D21S11 30 0.23214 p2 0.0539

30 0.23214

FGA 23 0.15816 2pq 0.0436

24 0.13776

TH01 8 0.12562 2pq 0.0767

9.3 0.30542

TPOX 8 0.54433 p2 0.296

8 0.54433

VWA 17 0.26276 2pq 0.117

18 0.22194

Profile probability = 2.76 × 10–14

a See Table 25.1.
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The effect of population structure should be considered and an appropriate correction should 
be made to estimate profile probabilities. The correction can be made by using the factor θ. Thus, 
the locus genotype frequency can be calculated as follows:

Locus genotype frequency for homozygotes:

 
P

p p
i =

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

2 1 3 1

1 1 2

θ θ θ θ

θ θ
 (25.7)

Locus genotype frequency for heterozygotes:

 
P

p q
j =

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

2 1 1

1 1 2

θ θ θ θ

θ θ
 (25.8)

The θ value is 0.01 for the majority US population and 0.03 for the Native American popula-
tion. Table 25.6 shows the calculation of profile probability with subpopulation correction using 
θ = 0.01. The profile probability is approximately three times higher than the value without the 
correction (Table 25.5). Additional corrections can be calculated for relatives, mixed stains, or 
database searches using formulas provided by the National Research Council’s guidelines.

25.2.1.2 Likelihood Ratio
The likelihood ratio (LR) method is an alternative for evaluating the strength of a match. The 
method allows the calculation of the probability of the DNA profile under two hypothesis:

 Hypothesis 1 (H1) —The evidence and suspect profiles originated from the same source.

 Hypothesis 2 (H2) —The evidence and suspect profiles did not originate from the same 
source (i.e., the suspect happens to have the same profile as that of the individual who 
left the evidence).

The LR is the probability of hypothesis H1 divided by the probability of hypothesis H2. Where 
Pr1 is the probability under hypothesis H1, and Pr2 is the probability under hypothesis H2, this 
can be expressed as:

 
LR

Pr

Pr
= 1

2
 (25.9)

The greater the numerator (Pr1), the greater the likelihood ratio becomes. The result favors hypoth-
esis H1 (the evidence and suspect profile originated from the same source). Pr1 is equal to 1 (100%) 
when a match occurs, and Pr2 is equal to the profile probability. A LR of 1000 indicates that the evi-
dence is 1000 times as probable if the evidence and suspect profiles originated from the same source.

25.2.2 Haplotypes
The term haplotype was first used to describe very closely linked polymorphic loci. During meio-
sis, alleles at neighboring loci cosegregate (both alleles segregate as a single allele) because of the 
close linkage of loci. The term also applies to genetic regions within which recombination events 
are very rare, that is, within mitochondrial and Y-chromosomal DNA. The entire mitochondrial 
DNA (mtDNA) sequence can be considered to be a single locus or haplotype because of the 
absence of recombination. Likewise, Y chromosome loci can also be considered haplotypes.

Where recombination is very rare, certain allelic combinations occur in populations much 
more frequently than would be expected. This phenomenon is called linkage disequilibrium. As 
a result, the HW principle cannot be applied. The two methods for evaluating the strength of 
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Table 25.6 Calculation of Profile Probability of STR with 13 CODIS Loci and Correction 
Factor (θ = 0.01)

Locus Profile
Allelic 

Frequencya Formula
Locus Genotype 

Frequency

CSF1PO 10 0.25369 2 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p 1 q 0.168

12 0.32512

D3S1358 14 0.14039 2 1 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p q 0.0734

15 0.24631

D5S818 11 0.41026 2 1 3 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p p 0.180

11 0.41026

D7S820 10 0.29064 2 1 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p q 0.121

11 0.20197

D8S1179 13 0.33929 2 1 3 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p p 0.126

13 0.33929

D13S317 11 0.31888 2 1 3 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p p 0.113

11 0.31888

D16S539 11 0.27228 2 1 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p q 0.187

12 0.33911

D18S51 15 0.12755 2 1 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p q 0.012

19 0.03571

D21S11 30 0.23214 2 1 3 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p p 0.0630

30 0.23214

FGA 23 0.15816 2 1 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p q 0.0473

24 0.13776

TH01 8 0.12562 2 1 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p q 0.0815

9.3 0.30542

TPOX 8 0.54433 2 1 3 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p p 0.309

8 0.54433

VWA 17 0.26276 2 1 1

1 1 2

θ θ θ θ

θ θ

+ −( )⎡⎣ ⎤⎦ + −( )⎡⎣ ⎤⎦
+( ) +( )

p q 0.120

18 0.22194

Profile 
probability = 7.8 × 10–14

a See Table 23.1.
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a match between haplotypes are (1) mitotype frequency and (2) likelihood ratios. The current 
most common approach for interpreting mtDNA profiles is mitotype frequency carried out with 
the gene counting method, that is, the calculation of the number of occurrences of a particular 
sequence or haplotype. The interpretation of Y chromosome profiles is similar to the interpre-
tation of mtDNA profiles. The estimation of the frequency of a mitotype can be calculated as 
shown below.

25.2.2.1 Mitotypes Observed in Database
If a mitotype is observed at least once in a database, Equation 25.10 can be used. Pmt is the mito-
type frequency, x is the number of observations of the haplotype, and n is the size of the database 
(the number of mitotype entries):

 
P

x

n
mt =

+
+

2

2
 (25.10)

Any sampling error may be addressed by a confidence interval:

 
P

P P

n
mt

mt mt±
−( )

1 96
1

.  (25.11)

In this case, Pmt is the mitotype frequency, and n is the size of the database. The conservative 
upper bound of the frequency is usually quoted.

25.2.2.2 Mitotype Not Observed in Database
If a mitotype has not been observed in a database, Equation 25.12 can be used to calculate the 
mitotype frequency; α is 0.05 for a 95% confidence interval and n is the size of the database.

 P n
mt = −1 1α /  (25.12)
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26
Quality Assurance and Quality Control
Quality assurance (QA) for forensic services requires certain processes to ensure that a service 
will meet laboratory requirements for the integrity of testing. A QA program must include com-
ponents that address:

  Continuing education, training, and certification of personnel

  Specification and calibration of equipment and reagents

  Documentation and validation of analytic methods

  Use of appropriate standards and controls

  Sample handling procedures

  Proficiency testing

  Data interpretation and reporting

  Audits (internal and external) and laboratory accreditation

  Corrective actions to address deficiencies and assessments for laboratory competence

Over the years, many guidelines for quality assurance in forensic DNA laboratories have 
been established. These guidelines will be introduced in this chapter.

Quality control (QC) for forensic services refers to the operational procedures necessary to 
meet quality requirements. QC procedures may include maintenance of calibration records for 
equipment and instruments as well as the testing of chemical reagents and supplies used in 
analysis to ensure reliable results.

26.1 US Quality Standards
DNA profiling methods were first used in criminal investigations in the 1980s. By the early 
1990s, emerging forensic DNA techniques had undergone detailed reviews by the National 
Research Council (NRC) of the National Academy of Sciences. In 1992, the first published NRC 
report included recommendations in the areas of (1) technical considerations, (2) statistical 
interpretation, (3) laboratory standards, (4) data banks and privacy, (5) legal considerations, 
and (6) societal and ethical issues related to forensic DNA testing. The NRC report attempted 
to explain the basic scientific principles of forensic DNA technology and made suggestions for 
applications and improvements. However, the report received negative criticism from both the 
forensic and the legal communities.
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In 1996, a second NRC committee was formed “to update and clarify discussion of the prin-
ciples of population genetics and statistics as they apply to DNA evidence.” Its report stated:

The central question that the report addresses is this: What information can a forensic scientist, 
population geneticist, or statistician provide to assist a judge or jury in drawing inferences from the 
finding of a match? To answer this question, the committee reviewed the scientific literature and the 
legal cases and commentaries on DNA profiling, and it investigated the criticisms that have been 
voiced about population data, statistics, and laboratory error. Much has been learned since the last 
report. The technology for DNA profiling as well as the methods for estimating frequencies and 
related statistics have progressed to the point where the reliability and validity of properly collected 
and analyzed DNA data should not be in doubt. The new recommendations presented here should 
pave the way to more effective use of DNA evidence. (The Evaluation of Forensic DNA Evidence also 
known as the NRC II report)

The NRC II report consisted of (1) an introduction describing the 1992 report, changes made 
subsequent to that report, and the validity and application of DNA typing techniques; (2) assur-
ance of high standards of laboratory performance; (3) population genetics issues; (4) statistical 
issues; and (5) DNA evidence in the legal system.

In 1995, The DNA Advisory Board (DAB) was formed as a result of the DNA Identification Act 
(1994) passed by Congress. The DAB served from 1995 to 2000 to develop guidelines for quality 
assurance in forensic laboratories. During that time, the DAB provided two sets of guidelines: 
Quality Assurance Standards for Forensic DNA Testing Laboratories (1998) and Quality Assurance 
Standards for Convicted Offender DNA Databasing Laboratories (1999). These standards describe 
the requirements to ensure quality and integrity of the data as well as competency of laboratories.

These standards were built on the previous standards set by the Scientific Working Group on 
DNA Analysis Methods (SWGDAM). After the DAB’s assignment ended in 2000, the SWGDAM 
became responsible for providing guidelines to the US forensic community. The SWGDAM was 
established in 1988 by the FBI Laboratory. It was initially called the Technical Working Group 
on DNA Analysis Methods; the name changed in 1998. The SWGDAM comprises forensic scien-
tists from DNA laboratories in the United States and Canada. Its purpose is to facilitate forensic 
DNA community discussions regarding necessary laboratory methods and to share protocols 
for forensic DNA testing. The FBI sponsors and hosts its meetings and plays an important role 
in its activities.

The SWGDAM established and revised several guidelines including the Guidelines for a 
Quality Assurance Program for DNA Analysis, published in 1989, 1991, and 1995 (the vali-
dation section was revised in 2003); Quality Assurance Standards for Forensic DNA Testing 
Laboratories (2011); Quality Assurance Standards for DNA Databasing Laboratories (2011); 
Validation Guidelines for DNA Analysis Methods (2012); and SWGDAM Training Guidelines, 
published in 2001 and revised in 2013.

The SWGDAM also formed subcommittees to provide guidelines in more specific areas of 
forensic DNA testing, for example, SWGDAM’s Interpretation Guidelines for Autosomal STR 
Typing by Forensic DNA Testing Laboratories (2010), Y-chromosome Short Tandem Repeat 
(Y-STR) Interpretation Guidelines (2009), and Interpretation Guidelines for Mitochondrial 
DNA Analysis by Forensic DNA Testing Laboratories (2013). The SWGDAM also organized a 
number of interlaboratory and validation studies for new techniques.

26.2 International Quality Standards
In the early stages of forensic DNA testing, the International Society for Forensic Genetics (ISFG) 
recognized the potential of DNA testing for criminal investigations and made a number of rec-
ommendations related to the forensic application of DNA polymorphisms.
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The ISFG provided various recommendations for forensic DNA testing of STR, mtDNA, and 
Y chromosome markers for the international community. It formed a working group called 
the European DNA Profiling Group (EDNAP) in 1991. The EDNAP has investigated systems 
for DNA profiling, has organized a number of collaborative exercises for the evaluation of new 
methods, and has published reports of its studies.

The European Network of Forensic Science Institutes (ENFSI) formed its DNA working group 
about a decade ago to address issues of quality and standards for forensic DNA testing. The 
Interpol European Working Party on DNA Profiling (IEWPDP) also makes recommendations for 
applying DNA evidence to criminal investigations in Europe. Based on the EDNAP exercises 
and recommendations by the ENFSI and IEWPDP, the European Standard Set (ESS) for auto-
somal STR core loci was established. The Standardization of DNA Profiling Techniques in the 
European Union (STADNAP) group has been working on the selection of forensic DNA profil-
ing systems, methods for use among European countries, and the maintenance of European 
population databases.

26.3 Laboratory Accreditation
Accreditation is the process used to assess the qualification of a laboratory to meet established 
standards. During an accreditation process, the services and performance of a laboratory are 
evaluated, particularly in the areas of management, operations, personnel, procedures, equip-
ment, physical plants, security, and personnel safety procedures. The accreditation process 
generally involves several components such as self-evaluation, the preparation of supporting 
documents, on-site inspection and reports, and accreditation review reports.

Accreditation in the United States is offered by the Laboratory Accreditation Board of the 
American Society of Crime Laboratory Directors (ASCLD/LAB) for forensic laboratories per-
forming casework. The American Association of Blood Banks (AABB) provides accreditation for 
laboratories performing DNA parentage testing according to the AABB’s standards.

The accreditation of a forensic laboratory is granted for 5 years. To remain in compliance, a 
laboratory must undergo audits to evaluate its operation according to established guidelines. The 
FBI has published the Quality Assurance Standards Audit for Forensic DNA Testing Laboratories 
(2011) and the Quality Assurance Standards Audit for DNA Databasing Laboratories (2011). The 
areas of operating protocols, instruments and equipment, and personnel training are evalu-
ated based on guidelines. Problems identified during an audit must be documented and actions 
to resolve the problems must be addressed. Annual internal audits and external audits during 
alternate years are required under the guidelines.

26.4 Laboratory Validation
Validation is the process of confirming that a laboratory procedure is sufficiently robust, reli-
able, and reproducible. A robust method maintains successful performance and can cope with 
errors. A reliable method produces accurate results. A reproducible method achieves the same 
or very similar results each time a sample is tested.

Two types of laboratory validations, developmental and internal validations, are used for 
modifying methods for forensic DNA analysis. An internal validation is required when adopting 
a procedure for forensic applications. Based on the SWGDAM’s Validation Guidelines for DNA 
Analysis Methods, the internal validation is “an accumulation of test data within the laboratory 
to demonstrate that established methods and procedures perform as expected in the laboratory.” 
The developmental validation “is the acquisition of test data and determination of conditions 
and limitations of a new or novel DNA methodology for use on forensic, database, known or 
casework reference samples.” For example, the characterization of a new genetic marker requires 
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studies in the inheritance, the genomic location, the detection method, and the polymorphism 
of the genetic marker. However, developmental validation studies in the same subject but from 
fields other than forensic DNA analysis may be acceptable for forensic applications.

Additionally, the precision and the accuracy of the test are important criteria for develop-
mental validation. Based on the SWGDAM, precision “characterizes the degree of mutual agree-
ment among a series of individual measurements, values and/or results. Precision depends only 
on the distribution of random errors and does not relate to the true value or specified value.” The 
measure of precision can be expressed as a standard deviation of test results. Accuracy is referred 
to as “the ability of a measuring instrument to give responses close to a true value,” which can be 
assessed by a performance check, a quality assurance procedure monitoring the performance of 
instruments and equipment affecting the accuracy of forensic DNA testing.

26.5 Proficiency Testing
Proficiency testing is an important component of quality control and quality assurance. It 
evaluates a laboratory’s performance of DNA analyses according to the laboratory’s standard 
protocols. Proficiency testing also evaluates the quality of performance by individual analysts 
following laboratory protocols.

Proficiency tests of DNA analysts must be conducted every 6 months based on DNA Advisory 
Board Standards. The testing usually involves mock forensic case samples including questioned 
bodily fluid stains and reference samples. The test is assigned to an analyst for processing 
according to the laboratory procedures. A report must be prepared and is then reviewed. The 
proficiency test can be administered as either an open or a blind test. In the blind test, the ana-
lyst is not aware that he or she is being tested. Blind testing is considered a more effective means 
of evaluating performance.

The tests may be administered internally or by any of a number of external testing organi-
zations. For example, Orchid Cellmark provides the International Quality Assessment Scheme 
(IQAS) DNA proficiency test, and the Collaborative Testing Services (CTS) Forensics Testing 
Program offers similar proficiency tests. These proficiency tests may include a selection of sam-
ple types (neat or mixture) for serological tests and/or DNA analysis (autosomal STR, Y-STR, 
and mitochondrial DNA). The College of American Pathologists (CAP) has a paternity testing 
proficiency program offering external proficiency tests. In Europe, the German DNA Profiling 
Group (GEDNAP) provides proficiency testing for participating European laboratories.

26.6 Certification
Certification is a voluntary process that recognizes the attainment of professional qualifications 
needed for practice in forensic services. Certification is not required, but is desired by some 
laboratories. In 2009, a report entitled Strengthening Forensic Science in the United States: A 
Path Forward was published by the Committee on Identifying the Needs of the Forensic Science 
Community at the National Academy of Sciences. The report recommends that certification 
should be mandatory for forensic science professionals, which includes written examinations, 
supervised practice, proficiency testing, and compliance to a code of ethics (Section 26.8). In the 
United States, the American Board of Criminalistics (ABC) offers three types of certification for 
forensic scientists. A diplomate must pass a general knowledge examination. ABC also requires 
a bachelor’s degree in a natural science and 2 years of experience in a forensic laboratory. To 
obtain fellow status (higher than diplomate status), an applicant must have 2 years of experience 
in his or her specialty and must have met the diplomate requirements in addition to passing a 
written specialty examination and a proficiency test.
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ABC has added a third certification that is completely separate from the other certification 
programs. The technical specialist certification for molecular biology was created to recognize 
the qualifications required for the analysis of biological materials through DNA profiling. An 
applicant must take a specialist examination containing questions from the general knowledge 
examination and a subset of questions from the forensic biology fellow examination. This cer-
tification also requires a bachelor’s degree in a natural science and 2 years of experience along 
with successful completion of a proficiency examination within 12 months of taking the techni-
cal specialist certification examination.

26.7 Forensic DNA Analyst Qualifications
DAB’s Quality Assurance Standards for Forensic DNA Testing Laboratories require that an 
examiner or analyst have “at a minimum a BA/BS degree or its equivalent degree in a biology, 
chemistry or forensic science-related area and must have successfully completed college course 
work (graduate or undergraduate level) covering the subject areas of biochemistry, genetics and 
molecular biology,” as well as “course work and/or training in statistics and population genetics 
as it applies to forensic DNA analysis.”

Additionally, SWGDAM Training Guidelines discuss the course work requirements in detail. 
At least nine cumulative semester hours are required for the course work covering the required 
subject areas. Particularly, the section in Fundamental Scientific Knowledge of the SWGDAM 
Training Guidelines defines required key elements to be covered in course work. The key ele-
ments also aid in evaluating the contents of the course work.

Biochemistry “refers to the nature of biologically important molecules in living systems, DNA 
replication and protein synthesis, and the quantitative and qualitative aspects of cellular metab-
olism,” and may include but is not limited to:

  Structure and function of cellular components such as proteins, carbohydrates, lipids, 
nucleic acids, and other biomolecules

  Chemistry of enzyme-catalyzed reactions

  Metabolism

  DNA and RNA

  Protein synthesis

  Cell membrane transport

  Signal transduction

Genetics “refers to the study of inherited traits, genotype/phenotype relationships, and popula-
tion/species differences in allele and genotype frequencies,” and may include but is not limited to:

  Heredity

  Function of genes

  Gene expression

  Recombinant DNA

  Mitosis/meiosis

Molecular biology “covers theories, methods, and techniques used in the study and analysis of 
gene structure, organization, and function,” and may include, but is not limited to:

  Interrelationship of DNA, RNA, and protein synthesis

  Central dogma
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  Transcription, translation, replication

  Recombinant DNA techniques

  PCR

  Cloning

Course work that is similar in content and scope to those described above may be qualified as 
required course work. Compliance with the required course contents can be evaluated through 
transcripts, syllabi, and letters from the instructors.

DAB’s Quality Assurance Standards for Forensic DNA Testing Laboratories also describes 
requirements for an analyst to meet prior to initiating independent casework analysis using 
DNA technology. First, an analyst must have at least 6 months of forensic DNA laboratory expe-
rience “including the successful analysis of a range of samples typically encountered in forensic 
casework.” Second, an analyst must have “successfully completed a qualifying test before begin-
ning independent casework responsibilities.”

26.8 Code of Ethics of Forensic Scientists
Ethical codes for forensic scientists are used as guides for individuals making their decisions 
in distinguishing the difference between correctness and incorrectness. These codes are usu-
ally adopted by forensic organizations to regulate the profession. Failure to comply with a code 
of forensic practice can raise doubt in an individual’s fitness for providing forensic services. 
Additionally, it may result in the expulsion of an individual from a forensic organization. 
A typical document of ethical codes for forensic scientists generally contains five sections: (1) 
ethics relating to the scientific method, (2) ethics relating to opinions and conclusions, (3) ethi-
cal aspects of court presentation, (4) ethics relating to the general practice of forensics, and (5) 
ethical responsibilities to the profession.

For the first section, the ethical application of scientific methods is discussed in detail. True 
scientific methods should be utilized to adequately analyse all the evidence. Such analyses 
should not be conducted by secret processes. Conclusions should be drawn from the analyses of 
evidence that appears representative, typical, or reliable.

Moreover, ethical standards relating to opinions and conclusions are very important to the 
forensic profession. Conclusions should always be drawn from the application of proven scien-
tific methods. The purpose of experimental design and the interpretation of results is to reveal 
facts. During an analysis, experimental controls should always be utilized. If necessary, the 
results of analyses should be verified by repeating the analysis or using additional techniques. 
Explanations should be provided where inconclusive results are obtained. The opinion provided 
by a forensic scientist should be unbiased and should not be influenced by matters unrelated to 
the specific evidence in question. A forensic scientist should not choose the interpretation that 
is in favor of the side of his or her employer.

Pertaining to the courtroom, ethical standards relating to expert witness testimonies is a cru-
cial component for a forensic scientist. An expert opinion is defined as a formal consideration of 
a subject within an individual’s knowledge, skill, education, training, and experience. A forensic 
scientist should not extend an opinion beyond his or her competence. Appropriate terms should 
be used to represent the degrees of certainty of an expert opinion. A forensic scientist should 
not only present the evidence that supports the view of the side of his or her employer. When 
testifying as an expert witness, language that can be understood by lay jurors should be used to 
avoid misinterpretation.

Furthermore, in terms of the general practice of forensic science, a few things should be men-
tioned here. A forensic scientist in private practice should set a reasonable fee for the services 
provided, which should not be rendered on a contingency fee basis. When a different opinion 
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is presented by another analyst in the reexamination of evidence, both analysts should resolve 
their contradiction before the trial. A forensic scientist may serve, in an advisory capacity, either 
the prosecutor or defense in the cross-examination of another expert.

Lastly, ethical responsibilities to the profession are an important component of ethical 
codes. Information regarding new developments or techniques of forensic analysis should 
be made available to other forensic scientists. Likewise, any information regarding methods 
in use that may appear unreliable should be brought to the attention of others. Individual 
forensic scientists should not seek publicity for the association of their name with specific 
cases, developments, publications, or organizations solely for the purpose of gaining per-
sonal prestige.
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